Tao et al.
COMMUNICATION
ally, the protocol was also amenable to 2-thiophenyl,
2-furyl and 1-naphthyl imines, leading to the generation
of desired products in excellent yields ranging from
93% to 99% and with high enantioselectivity of up to
94% ee (entries 11-13). However, the Mannich reac-
tion of aliphatic imines with tert-butyl glycinate 5 was
unable to give satisfactory enantioselectivities.[13] The
relative configurations and absolute configuration of the
same products 7 were assigned by comparing the data
with those in the literatures by 1H NMR, HPLC and op-
tical rotation,[4c,4e] and other products were assigned by
analogy.
chiral phase transfer catalysts.
Acknowledgement
We are grateful for financial support from the Na-
tional Natural Science Foundation of China (No.
21232007).
References
[1] (a) Dehmlow, E. V.; Dehmlow, S. S. Phase Transfer Catalysis, 3rd
ed., VCH, Weinheim, 1993; (b) Starks, C. M.; Liotta, C. L.; Halpern,
M. Phase-Transfer Catalysis, Chapman & Hall, New York, 1994; (c)
Handbook of Phase-Transfer Catalysis, Eds.: Sasson, Y.; Neumann,
Table 2 Substrate scope for iminesa
R., Blackie Academic
& Professional, London, 1997; (d)
Phase-Transfer Catalysis, Ed.: Halpern, M. E., ACS Symposium
Series 659, American Chemical Society, Washington, D. C., 1997.
[2] (a) Shioiri, T. In Handbook of Phase-Transfer Catalysis, Eds.: Sas-
son, Y.; Neumann, R., Blackie Academic & Professional, London,
1997, Chapter 14, p. 462; (b) O’ Donnell, M. J. Phases-The Sachem
Phase Transfer Catalysis Review, Sachem Inc., Austin, TX, 1998,
Issue 4, p. 5; (c) O’Donnell, M. J. Phases-The Sachem Phase Trans-
fer Catalysis Review, Sachem Inc., Austin, TX, 1999, Issue 5, p. 5;
(d) Nelson, A. Angew. Chem., Int. Ed. 1999, 38, 1583; (e) Shioiri, T.;
Arai, S. In Stimulating Concepts in Chemistry, Eds.: Vögtle, F.;
Stoddart, J. F.; Shibasaki, M., Wiley-VCH, Weinheim, 2000, p. 123;
(f) O’Donnell, M. J. In Catalytic Asymmetric Syntheses, 2nd ed., Ed.:
Ojima, I., Wiley-VCH, New York, 2000, Chapter 10, p. 727; (g)
O’Donnell, M. J. Aldrichim Acta 2001, 34, 3; (h) Maruoka, K.; Ooi,
T. Chem. Rev. 2003, 103, 3013; (i) O’Donnell, M. J. Acc. Chem. Res.
2004, 37, 506; (j) Lygo, B.; Andrews, B. I. Acc. Chem. Res. 2004,
37, 518; (k) Vachon, J.; Lacour, J. Chimia 2006, 60, 266; (l) Ooi, T.;
Maruoka, K. Angew. Chem., Int. Ed. 2007, 46, 4222; (m) Ooi, T.;
Maruoka, K. Aldrichim. Acta 2007, 40, 77; (n) Hashimoto, T.; Ma-
ruoka, K. Chem. Rev. 2007, 107, 5656; (o) Maruoka, K. Org. Proc-
ess Res. Dev. 2008, 12, 679; (p) Maruoka, K. Asymmetric Phase
Transfer Catalysis, Wiley-VCH, Weinheim, 2008.
[3] For reviews on direct asymmetric Mannich reactions, see: (a) Ver-
kade, J. M. M.; van Hemert, L. J. C.; Quaedflieg, P. J. L. M.; Rutjes,
F. P. J. T. Chem. Soc. Rev. 2008, 37, 29; (b) Shibasaki, M.; Matsu-
naga, S. Chem. Soc. Rev. 2006, 35, 269; (c) Ting, A.; Schaus, S. E.
Eur. J. Org. Chem. 2007, 35, 5797; (d) Marques, M. M. B. Angew.
Chem., Int. Ed. 2006, 45, 348.
[4] (a) Ooi, T.; Kameda, M.; Fujii, J.; Maruoka, K. Org. Lett. 2004, 6,
2397; (b) Shibuguchi, T.; Mihara, H.; Kuramochi, A.; Ohshima, T.;
Shibasaki, M. Chem. Asian J. 2007, 2, 794; (c) Okada, A.; Shibugu-
chi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.; Shibasaki, M.
Angew. Chem., Int. Ed. 2005, 44, 4564; (d) Uraguchi, D.; Ueki, Y.;
Ooi, T. J. Am. Chem. Soc. 2008, 130, 14088; (e) Zhang, W.-Q.;
Cheng, L.-F.; Yu, J.; Gong, L.-Z. Angew. Chem., Int. Ed. 2012, 51,
4085; (f) Ortín, I.; Dixon, D. J. Angew. Chem., Int. Ed. 2014, 53,
3462.
NHBoc
Cat. 3c (10 mol%)
Cs2CO3 (2 equiv.)
CO2t-Bu
Boc
Ph
N
CO2t-Bu
Ar
N
+
N
Ph
Na2SO4, Toluene
-20 oC, 48 h
Ph
Ar
Ph
5
6
7
Entry
1
Ar
6b (C6H5)
Yield b/%
drc
eed/%
93
96
92
94
94
92
88
94
93
90
92
94
90
99
99
99
99
99
90
99
99
64
>20∶1
19∶1
2
6c (2-FC6H4)
6d (3-FC6H4)
6e (4-FC6H4)
6f (4-ClC6H4)
6g (4-BrC6H4)
6h (4-MeC6H4)
6i (3-MeC6H4)
6j (3-MeOC6H4)
3
19∶1
4
20∶1
5
>20∶1
>20∶1
15∶1
6
7
8
17∶1
9
>20∶1
13∶1
10
11
12
13
6k (3,4-Cl2C6H3)
6l (2-thiophenyl)
6m (2-furyl)
99
99
93
99
10∶1
14∶1
6n (1-naphthyl)
6∶1
a Unless indicated otherwise, reactions of 5 (0.10 mmol), 6 (0.12
mmol), catalyst 3c (0.01 mmol), Cs2CO3 (0.20 mmol) and
Na2SO4 (100 mg) were carried out in toluene (1 mL) for 48 h.
b Isolated yield. c Determined by H NMR analysis. d Determined
by HPLC analysis.
Conclusions
In conclusion, we have developed a family of qui-
nine-based ammonium salts featured by the incorpora-
tion of an additional axial chirality, capable of effi-
ciently promoting the Mannich-type reaction of a gly-
cine Schiff base with N-Boc imines. In particular, the
ammonium salt derived from (R)-BINOL and quinine
was found to be the most efficient catalyst, rendering
the Mannich reaction to give α,β-diamino ester deriva-
tives in up to 99% yield and with high diastereo- and
enantioselectivities (up to>20∶1 dr and 96% ee).
More importantly, the finding that the axial chirality
plays a crucial role in the control of stereoselectivity
might provide a possible clue for the design of new
[5] For reviews on α,β-diamino acids: (a) Viso, A.; de la Pradilla, R. F.;
García, A.; Flores, A. Chem. Rev. 2005, 105, 3167; (b) Viso, A.; de
la Pradilla, R. F.; Tortosa, M.; García, A.; Flores, A. Chem. Rev.
2011, 111, PR1; For a review on the synthesis of α,β-diamino acids
by using Mannich reaction strategies, see: (c) Arrayas, R. G.; Car-
retero, J. C. Chem. Soc. Rev. 2009, 38, 1940.
[6] For selected examples of enantioselective Mannich reactions of gly-
cinate ester Schiff bases and related pronucleophiles with imines
accelerated by organocatalysts other than PTC: (a) Bandar, J. S.;
Lambert, T. H. J. Am. Chem. Soc. 2013, 135, 11799; (b) Liu, X.;
Deng, L.; Jiang, X.; Yan, W.; Liu, C.; Wang, R. Org. Lett. 2010, 12,
876; (c) Shi, S.-H.; Huang, F.-P.; Zhu, P.; Dong, Z.-W.; Hui, X.-P.
Org. Lett. 2012, 14, 2010; (d) Zhang, H.; Syed, S.; Barbas III, C. F.
972
© 2014 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2014, 32, 969—973