R. Kowalczyk et al. / Tetrahedron: Asymmetry 24 (2013) 505–514
513
4.5.5. (S)-(E)-2-(((1-Nitro-4-phenylbut-3-en-2-yl)thio)methyl)
furan 14e
was diluted with CH2Cl2 (10 mL) and treated with water (10 mL).
The phases were separated, and the aqueous layer was washed
with CH2Cl2 (2 ꢁ 10 mL). The combined organic extracts were
washed with NaHCO3 (satd aq 10 mL) and dried (MgSO4). After
evaporation of the solvent, the oily residue was subjected to flash
chromatography (silica gel, 30 g, CHCl3) to afford 154 mg (41%
yield after two steps) of the desired racemic amide 14: light brown
oil; 1H NMR (300 MHz, CDCl3): d 1.88 (s, 3H), 3.47–3.64 (m, 2H),
3.53 (d, J = 13.4 Hz, 1H), 3.68 (d, J = 13.4 Hz, 1H), 4.36 (t,
J = 7.3 Hz, 1H), 5.64–5.68 (m, 1H), 7.14 (d, J = 8.2 Hz, 2H), 7.21–
7.26 (m, 3H), 7.35 (d, J = 2.2 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H); 13C
NMR (75 MHz, CDCl3): d 23.2, 35.3, 43.4, 44.7, 121.8, 128.7,
129.5, 130.0, 130.3, 133.1, 133.9, 134.7, 136.03, 136.04, 170.0.
Spectra are in agreement with the reported ones.8b
Sandy amorphous solid that turned brown during storage, yield
64%, 78% ee; ½a 2D0
ꢂ
¼ þ261:0 (c 0.40, CHCl3); 1H NMR (300 MHz,
CDCl3): d 3.80 (s, 2H), 4.13–4.22 (m, 1H), 4.51–4.60 (m, 2H), 6.04
(dd, J = 15.6, 9.0 Hz, 1H), 6.24 (dd, J = 3.2, 0.7 Hz, 1H), 6.36 (dd,
J = 3.2, 1.8 Hz, 1H), 6.56 (d, J = 15.6 Hz, 1H), 7.29–7.42 (m, 6H);
13C NMR (75 MHz, CDCl3): d 27.3, 44.6, 77.8, 108.1, 110.6, 124.0,
126.7, 128.4, 128.7, 134.4, 135.5, 142.5, 150.6; IR (neat) v: 3028,
1556, 1376, 1150, 1012, 967, 744, 694 cmꢀ1; HRMS (ESI): calcd
for C15H15NO3SNa [M+Na]+: 312.0670, found: 312.0664; HPLC:
AD-H, n-hexane/IPA 99:1; 1 mL/min; k = 254 nm; tr = 28.04 min
(minor); tr = 32.03 (major); 78% ee.
4.5.6. (S)-(E)-(4-Chlorobenzyl)(1-nitro-4-phenylbut-3-en-2-yl)
sulfide 14f
Acknowledgement
Pale yellow oil, yield 75%, 58% ee; ½a D20
¼ þ169:9 (c 0.98, CHCl3);
ꢂ
1H NMR (300 MHz, CDCl3): d 3.76 (d, J = 1.5 Hz, 2H), 4.02 (dd,
J = 16.4, 7.8 Hz, 1H), 4.55 (d, J = 7.7 Hz, 2H), 6.01 (dd, J = 15.7,
9.0 Hz, 1H), 6.45 (d, J = 15.7 Hz, 1H), 7.25–7.29 (m, 2H), 7.30–7.37
(m, 7H); 13C NMR (75 MHz, CDCl3): d 34.6, 44.5, 77.9, 124.2,
126.6, 128.4, 128.7, 128.9, 130.2, 133.3, 134.2, 135.4, 135.6; IR
This project was funded by the National Science Centre, Cracow,
Poland (Grant 03/D/ST5/05766).
References
(neat)
v: 3028, 2919, 1555, 1490, 1375, 1093, 1015, 966, 834,
747, 693 cmꢀ1; HRMS (ESI): calcd for C17H16Cl35NO2SNa [M+Na]+:
356.0488, found 356.0483; HPLC: AD-H, n-hexane/IPA 90:10;
1 mL/min; k = 254 nm; tr = 8.81 min (minor); tr = 10.46 (major);
58% ee.
1. (a) Koval’, I. V. Russ. J. Org. Chem. 2007, 43, 319; (b) Enders, D.; Luttgen, K.;
Narine, A. A. Synthesis 2007, 959.
2. Hiemstra, H.; Wynberg, H. J. Am. Chem. Soc. 1981, 103, 417.
3. (a) Kanemasa, S.; Oderaotoshi, Y.; Wada, E. J. Am. Chem. Soc. 1999, 121, 8675;
(b) Kobayashi, S.; Ogawa, C.; Kawamura, M.; Sugiura, M. Synlett 2001, 983; (c)
Abe, A. M. M.; Sauerland, S. J. K.; Koskinen, A. M. P. J. Org. Chem. 2007, 72, 5411;
(d) Zu, L.; Wang, J.; Li, H.; Xie, H.; Jiang, W.; Wang, W. J. Am. Chem. Soc. 2007,
129, 1036; (e) Zu, L.; Xie, H.; Li, H.; Wang, J.; Jiang, W.; Wang, W. Adv. Synth.
Catal. 2007, 349, 1882; (f) Liu, Y.; Sun, B.; Wang, B.; Wakem, M.; Deng, L. J. Am.
Chem. Soc. 2009, 131, 418; (g) Dai, L.; Yang, H.; Chen, F. Eur. J. Org. Chem. 2011,
5071.
4. (a) Marigo, M.; Schulte, T.; Franzen, J.; Jørgensen, K. A. J. Am. Chem. Soc. 2005,
127, 15710; (b) Galzerano, P.; Pesciaioli, F.; Mazzanti, A.; Bartoli, G.; Melchiorre,
P. Angew. Chem., Int. Ed. 2009, 48, 7892; for the cascade processes, see: (c)
Wang, W.; Li, H.; Wang, J.; Zu, L. J. Am. Chem. Soc. 2006, 128, 10354; (d) Zhao,
G.-L.; Vesely, J.; Rios, R.; Ibrahem, I.; Sundén, H.; Córdova, A. Adv. Synth. Catal.
2008, 350, 237; (e) Brandau, S.; Maerten, E.; Jørgensen, K. A. J. Am. Chem. Soc.
2006, 128, 14986; (f) Li, H.; Zu, L.; Xie, H.; Wang, J.; Jiang, W.; Wang, W. Org.
Lett. 2007, 9, 1833.
5. (a) Emori, E.; Arai, T.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1998, 120, 4043;
(b) McDaid, P.; Chen, Y.; Deng, L. Angew. Chem., Int. Ed. 2002, 41, 338.
6. (a) Ricci, P.; Carlone, A.; Bartoli, G.; Bosco, M.; Sambri, L.; Melchiorre, P. Adv.
Synth. Catal. 2008, 350, 49; (b) Bonollo, S.; Lanari, D.; Pizzo, F.; Vaccaro, L. Org.
Lett. 2011, 13, 2150; (c) Zhao, F.; Zhang, W.; Yang, Y.; Pan, Y.; Chen, W.; Liu, H.;
Yan, L.; Tan, C.-H.; Jiang, Z. Adv. Synth. Catal. 2011, 353, 2624; for the cascade
processes, see: (d) Ling, J.-B.; Su, Y.; Zhu, H.-L.; Wang, G.-Y.; Xu, P.-F. Org. Lett.
2012, 14, 1090.
4.5.7. (S)-(E)-Methyl-2-((1-nitro-4-phenylbut-3-en-2-
yl)thio)acetate 14g
Compound 13f was purified using flash chromatography using
gradient CH2Cl2–hexanes (1:1, v/v) to CH2Cl2 (100%); light yellow
oil, yield 92%, 5% ee; ½a D20
ꢂ
¼ þ12:2 (c 0.59, CHCl3); 1H NMR
(600 MHz, CDCl3): d 3.29 (d, J = 1.9 Hz, 2H), 3.72 (s, 3H), 4.37 (td,
J = 8.7, 6.4 Hz, 1H), 4.63 (dd, J = 12.8, 8.7 Hz, 1H), 4.71 (dd,
J = 12.8, 6.4 Hz, 1H), 6.02 (dd, J = 15.8, 9.0 Hz, 1H), 6.60 (d,
J = 15.8 Hz, 1H), 7.27–7.30 (m, 1H), 7.33–7.35 (m, 2H), 7.38–7.40
(m, 2H); 13C NMR (150 MHz, CDCl3): d 31.9, 45.2, 52.6, 77.6,
123.2, 126.7, 128.5, 128.6, 134.9, 135.3, 170.3; IR (neat)
2954, 1734, 1555, 1436, 1376, 1295, 1154, 1006, 968, 749,
695 cmꢀ1 HRMS (ESI): calcd for C13H15NO4SNa [M+Na]+:
v: 3028,
;
304.062, found 304.0628; HPLC: AD-H, n-hexane/IPA 90:10;
1 mL/min; k = 254 nm; tr = 12.02 min (minor); tr = 13.31 (major);
5% ee.
7. Tian, X.; Cassani, C.; Liu, Y.; Moran, A.; Urakawa, A.; Galzerano, P.; Arceo, E.;
Melchiorre, P. J. Am. Chem. Soc. 2011, 133, 17934.
4.6. Reduction of the nitro group in 12 followed by acylation
8. (a) Li, H.; Zu, L.; Wang, J.; Wang, W. Tetrahedron Lett. 2006, 47, 3145; (b)
Kimmel, K. L.; Robak, M. T.; Ellman, J. A. J. Am. Chem. Soc. 2009, 131, 8754; (c)
Kimmel, K. L.; Robak, M. T.; Thomas, S.; Lee, M.; Ellman, J. A. Tetrahedron 2012,
68, 2704; (d) Yang, W.; Du, D.-M. Org. Biomol. Chem. 2012, 10, 6876; (e)
Uraguchi, D.; Kinoshita, N.; Nakashima, D.; Ooi, T. Chem. Sci. 2012, 3, 3161.
9. For the latest reviews, see: (a) Siau, W.-Y.; Wang, J. Catal. Sci. Technol. 2011, 1,
1298; (b) Wende, R. C.; Schreiner, P. R. Green Chem. 1821, 2012, 14; for
squaramides as bifunctional catalysts, see: (c) Alemán, J.; Parra, A.; Jiang, H.;
Jørgensen, K. A. Chem. Eur. J. 2011, 17, 6890; for Cinchona alkaloid based urea
and thiourea catalysts, see: (d) Connon, S. J. Chem. Comm. 2008, 2499.
10. For selected examples of the highly enantioselective addition of aliphatic thiols
to Michael acceptors, see: (a) Leow, D.; Lin, S.; Chittimalla, S. K.; Fu, X.; Tan, C.-
H. Angew. Chem., Int. Ed. 2008, 47, 5641; (b) Dai, L.; Wang, S.-X.; Chen, F.-E. Adv.
Synth. Catal. 2010, 352, 2137.
The reduction was performed by adopting a literature proce-
dure.19 Tin(II) chloride dihydrate (790 mg, 3.52 mmol 3.66 equiv)
was added to a solution of racemic 12 (360 mg, 0.96 mmol,
1.0 equiv) in methanol (2.0 mL) and acetic acid (1.0 mL). The
resulting solution was stirred at reflux for 3 h and then cooled. Vol-
atiles were removed in vacuo. The oily residue was treated with a
mixture of diethyl ether/chloroform (20 mL/5 mL) and K2CO3 (satd,
aq, 20 mL). The phases were separated and the aqueous layer was
washed twice with a mixture of diethyl ether/chloroform (8 mL/
2 mL). The combined organic extracts were dried (MgSO4) and
the solvents were removed in vacuo. The resulting yellow oil
(268 mg) was dried under vacuum for 1 h. TLC revealed the con-
sumption of the starting material.
Crude amine 13 was directly subjected to reaction with acetic
anhydride: acetic anhydride (360 lL, 5.0 equiv. to nitro compound)
was added dropwise via syringe to a solution of crude amine 13
(268 mg) and Et3N (1.0 mL, 10 equiv) in dry CH2Cl2 (2 mL) at 0 °C
(ice-water bath). The temperature was allowed to reach 20 °C
and the mixture was stirred overnight. Next, the reaction mixture
11. Kreevoy, M. M.; Harper, E. T.; Duvall, R. E.; Wilgus, H. S., III; Ditsch, L. T. J. Am.
Chem. Soc. 1960, 82, 4899.
12. Chu, C.-M.; Tu, Z.; Wu, P.; Wang, C.-C.; Liu, J.-T.; Kuo, C.-W.; Shin, Y.-H.; Yao, C.-
F. Tetrahedron 2009, 65, 3878.
13. Palacio, C.; Connon, S. J. Chem. Commun. 2012, 48, 2849.
14. Pracejus, H.; Wilcke, F.-W.; Hanemann, K. J. Prakt. Chem. 1977, 319, 219.
15. (a) Kobayashi, N.; Iwai, K. Tetrahedron Lett. 1980, 21, 2167; (b) Kobayashi, N.;
Iwai, K. J. Org. Chem. 1981, 46, 1823; (c) Kobayashi, N.; Iwai, K. J. Am. Chem. Soc.
1978, 100, 7071; (d) Hodge, P.; Khoshdel, E.; Waterhouse, J.; Frechet, J. M. J. J.
Chem. Soc., Perkin Trans. 1 1985, 2327; (e) Lu, H.-H.; Zhang, F.-G.; Meng, X.-G.;
Duan, S.-W.; Xiao, W.-J. Org. Lett. 2009, 11, 3946.
16. Both enantiomeric forms of such compounds are offered by well-known
suppliers.