process. Therefore, the search for new sulfurating reagents
to apply to the construction of S-containing heterocycles
is an urgent need. Some elegant metal sulfides have
been developed recently for constructing organosulfur
molecules.16 In 2009, Ma and co-workers reported the first
example for the use of Na2S as sulfuration reagent.16a In
2011, a general method for the Pd-catalyzed Ar-SCF3
bond-forming reaction using AgSCF3 was developed by
the Buchwald group.16b Thiourea as a thiol surrogate has
also been applied in the synthesis of sulfur-containing
molecules.17 Ma et al. developed a novel thiiranation of
1,2-allenyl sulfones by using Na2S2O3 as sulfur source.18
However, to the best of our knowledge, Na2S2O3 as a
sulfurating reagent, which is readily available as stable salt
without any smell, is untouched in metal-catalyzed cou-
pling. Herein, we report a novel one-pot Pd-catalyzed
double CꢀS bond formation reaction using Na2S2O3 as
the sulfurating reagent.
Figure 1. Bioactive 1,4-benzothiazine scaffolds.
Scheme 1. Metal-Catalyzed CꢀS Bond Construction
the coupling of thiols and aryl halides catalyzed by Pd-
(PPh3)4.8 A wide range of transition metals, such as Pd,9
Ni,10 Co,11 In,12 Cu,13 Fe,14 and Rh15 have been developed
to achieve CꢀS bond formation. However, in most cases,
the thiols as the sulfur source are indispensable partners,
which generally suffer from preparation difficulties due to
the apt oxidation and unpleasant smell during the whole
Our study commenced with the reaction of 1aa (N-(2-
iodoethyl)-N-(2-iodophenyl)-4-methylbenzenesulfon-amide)
catalyzed by PdCl2(dppf) in the presence of Na2S2O3 5H2O.
Gratifyingly, the desired 4-tosyl-3,4-dihydro-2H-benzo[b]-
[1,4]thiazine 2a was isolated in 10% yield with 66% 1aa
recovered by using Cs2CO3 as base in MeCN (Table 1,
entry 1). The structure of 2a was confirmed by X-ray
(7) (a) Hegedus, L. L.; McCabe, R. W. In Catalyst Poisoning; Marcel
Dekker: New York, 1984. (b) Hutton, A. T. In Comprehensive Coordination
Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon:
Oxford, 1984; Vol. 5, p 1151.
(8) (a) Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.; Kato, Y.;
Kosugi, M. Bull. Chem. Soc. Jpn. 1980, 53, 1385. (b) Kosugi, M.;
Shimizu, T.; Migita, T. Chem. Lett. 1978, 13.
(9) (a) Mann, G.; Baranano, D.; Hartwig, J. F.; Rheingold, A. L.;
Guzei, I. A. J. Am. Chem. Soc. 1998, 120, 9205. (b) Murata, M.;
Buchwald, S. L. Tetrahedron 2004, 60, 7397. (c) Itoh, T.; Mase, T.
Org. Lett. 2004, 6, 4587. (d) Fernandez-Rodroeguez, M. A.; Shen, Q.;
Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 2180. (e) Itoh, T.; Mase, T.
Org. Lett. 2007, 9, 3687. (f) Lee, J. Y.; Lee, P. H. J. Org. Chem. 2008, 73,
7413. (g) Dahl, T.; Tornoe, C. W.; Bang-Andersen, B.; Nielsen, P.;
Jorgensen, M. Angew. Chem., Int. Ed. 2008, 47, 1726. (h) Eichman, C. C.;
Stambuli, J. P. J. Org. Chem. 2009, 74, 4005.
3
analysis.19 To enhance the solubility of Na2S2O3
3
5H2O, H2O was added as cosolvent which made a slight
improvement to the yield (Table 1, entry 2). It afforded a
20% yield when 5.0 equiv of Na2S2O3 5H2O were used,
3
but too much Na2S2O3 5H2O did not favor this transfor-
3
mation (Table 1, entries 3 and 4). Then phase-transfer
catalysts were tested and TBAB was proved to be a better
choice affording 39% yield (Table 1, entry 6). A great
(10) (a) Zhang, Y. G.; Ngeow, K. C.; Ying, J. Y. Org. Lett. 2007, 9,
3495. (b) Millois, C.; Diaz, P. Org. Lett. 2000, 2, 1705.
(11) Wong, Y.-C.; Jayanth, T. T.; Cheng, C.-H. Org. Lett. 2006, 8,
5613.
(12) (a) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org.
Lett. 2009, 11, 1697. (b) Sakai, N.; Miyazaki, T.; Sakamoto, T.; Yatsuda,
T.; Moriya, T.; Ikeda, R.; Konakahara, T. Org. Lett. 2012, 14, 4366. (c)
Reddy, V. P.; Swapna, K.; Kumar, A. V.; Rao, K. R. J. Org. Chem. 2009,
74, 3189.
(13) (a) Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett.
2002, 4, 2803. (b) Jammi, S.; Sakthivel, S.; Rout, L.; Mukherjee, T.;
Mandal, S.; Mitra, R.; Saha, P.; Punniyamurthy, T. J. Org. Chem. 2009,
74, 1971. (c) Larsson, P. F.; Correa, A.; Carril, M.; Norrby, P. O.; Bolm,
C. Angew. Chem., Int. Ed. 2009, 48, 5691. (d) Xu, H.-J.; Zhao, Y.-Q.;
Feng, T.; Feng, Y.-S. J. Org. Chem. 2012, 77, 2878.
(16) (a) Ma, D.; Xie, S.; Xue, P.; Zhang, X.; Dong, J.; Jiang, Y.
Angew. Chem., Int. Ed. 2009, 48, 4222. (b) Teverovskiy, G.; Surry, D. S.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 7312. (c) Ke, F.; Qu, Y.;
Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett. 2011, 13, 454. (d) van den
Hoogenband, A.; Lange, J. W.; Bronger, R. P.; Stoit, A. R.; Tupstra,
S. W. Tetrahedron Lett. 2010, 51, 6877. (e) Lai, C.; Backes, B. J.
Tetrahedron Lett. 2007, 48, 3033.
ꢀꢀꢀ
(17) (a) Argu1ello, J. E.; Schmidt, L. C.; Penenory, A. B. Org. Lett.
2003, 5, 4133. (b) Firouzabadi, H.; Iranpoor, N.; Gholinejad, M. Adv.
Synth. Catal. 2010, 352, 119. (c) Kuhn, M.; Falk, F. C.; Paradies, J. Org.
Lett. 2011, 13, 4100.
(14) (a) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008,
47, 2880. (b) Wu, J.-R.; Lin, C.-H.; Lee, C.-F. Chem. Commun. 2009,
4450. (c) Lin, Y.-Y.; Wang, Y.-J.; Lin, C.-H.; Cheng, J.-H.; Lee, C.-F.
J. Org. Chem. 2012, 77, 6100. (d) Wang, H.; Wang, L.; Shang, J.; Li, X.;
Wang, H.; Gui, J.; Lei, A. Chem. Commun. 2012, 48, 76.
(15) (a) Arisawa, M.; Ichikawa, T.; Yamaguchi, M. Org. Lett. 2012,
14, 5318. (b) Arisawa, M.; Suzuki, T.; Ishikawa, T.; Yamaguchi, M.
J. Am. Chem. Soc. 2008, 130, 12214. (c) Ajiki, K.; Hirano, M.; Tanaka,
K. Org. Lett. 2005, 7, 4193.
(18) Zhou, C.; Fu, C.; Ma, S. Angew. Chem., Int. Ed. 2007, 46, 4379.
(19) CCDC-917799 (2a): C15H15NO2S2, MW = 305.40, monoclinic,
space group P2(1)/n, final R indices [I > 2σ(I)], R1 = 0.0393, wR2 =
˚
0.1131, R indices (all data), R1 = 0.0461, wR2 = 0.1187, a = 8.3042(5) A,
˚
˚
b= 8.0453(5) A,c= 22.1419(14) A,R=90°,β= 98.853(2)°,γ=90°,V=
1461.67(16) A , T = 296(2) K, Z = 4, reflections collected/unique: 119430/
3
˚
3560 (R(int) = 0.0239). These data can be obtained free of charge from the
data_request/cif.
Org. Lett., Vol. 15, No. 11, 2013
2595