J Incl Phenom Macrocycl Chem (2013) 76:231–235
235
H8), 8.60 (s, 4H, OHv), 8.70 (s, 4H, OHh) ppm. NMR 13C
(150 MHz, DMSO-d6) d 41.5 (s, C1), 67.6 (s, C10), 67.6
(s, C10), 101.8 (s, C5h), 101.9 (s, C5v), 119.3 (s, C8), 120.4
(s, C2h), 120.8 (s, C2v), 128.9 (s, C3v), 130.1 (s, C7), 131.4
(s, C3h), 141.7 (s, C6), 147.4 (s, C9), 152.7 (s, C4v), 152.9
(s, C4h). IR mmax: 831 (P = S); 924, 1028 (P-O-C); 3,100–
3,600 (OH) cm-1. ESI–MS: m/z = 1345 [M ? H]? (calcd.
M = 1344). Anal. calcd. for C60H52O20P4S4: C, 53.57; H,
3.87; P, 9.23; S, 9.52. Found: C, 53.59; H, 3.60; P, 8.98; S,
9.31.
References
1. Jain, V.K., Kanaiya, P.H.: Chemistry of calyx[4]resorcinarenes.
Russ. Chem. Rev. 80, 75–102 (2011)
2. Tunstad, L.M., Tucker, J.A., Dalcanale, E., Weiser, J., Bryant,
J.A., Sherman, J.C., Helgeson, R.C., Knobler, C.B., Cram, D.J.:
Host–guest complexation. 48. Octol building blocks for carcer-
ands and cavitands. J. Org. Chem. 54, 1305–1312 (1989)
3. Thoden van Velzen, E.U., Engbersen, J.F., Reinhoudt, D.N.: Self-
assembled monolayers of receptor adsorbates on gold: preparation
and characterization. J. Am. Chem. Soc. 116, 3597–3598 (1994)
¨
4. Hogberg, A.G.S.: Two stereoisomeric resorcinol-acetaldehydes
condensation product. J. Org. Chem. 45, 4498–4500 (1980)
5. Yamakawa, Y., Ueda, M., Nagahata, R., Takeuchi, T., Asai, M.:
Rapid synthesis of dendrimers based on calix[4]resorcinarenes.
J. Chem. Soc. Perkin Trans. 1, 4135–4139 (1998)
Calix[4]resorcinol 5b
6. Prosvirkin, A.V., Kazakova, E.K., Gubaidullin, A.T., Litvinov,
I.A., Gruner, M., Habicher, W.D., Konovalov, A.I.: Synthesis of
rctt, rccc, and rcct diastereomers of calix[4]methylresorcinarenes
based on p-tolualdehyde. X-ray diffraction study of the rcct
isomer. Formation of rctt and rccc cavitands in a cone confor-
mation. Russ. Chem. Bull. Int. Ed. 54, 2550–2557 (2005)
7. Gavrilova, E.L., Naumova, A.A., Shatalova, N.I., Burilov, A.R.,
Pudovik, M.A., Krasilnikova, E.A., Konovalov, A.I.: The new
type of calix[4]resorcines bearing phosphonates and phospho-
nium fragments at the lower rim. Phosphorus Sulfur Silicon
Relat. Elem. 183, 561–565 (2008)
was obtained as light-pink powder by a method analogous
to that used to prepare 5a by the treatment of 2-methyl-
resorcinol 4b (0.57 g of 90 % purity, 4.10 mmol) with
aldehyde 3 (1.00 g, 4.10 mmol). Yield 1.42 g (89 %).
Mp [ 300 ꢁC (dec.). 31P NMR (166.93 MHz, DMSO-d6) d
1
78.9 ppm. H NMR (600 MHz, DMSO-d6) d 1.93 (s, 6H,
CHh3), 2.07 (s, 6H, CHv3), 4.54 (m, 16H, H10), 5.23 (s, 2H,
H3h), 5.65 (s, 4H, H1), 6.11 (s, 2H, H3v), 6.65 (d,
3
3JHH = 8.4, 8H, H7), 6.72 (d, JHH = 8.4, 8H, H8), 7.45
8. Da Costa, C.P., Krajewska, D., Okruszek, A., Stec, W.J., Sigel,
H.: Stabilities of lead(II) complexes formed in aqueous solution
with methyl thiophosphate (MeOPS2-), uridine 50-O-thiomono-
(s, 4H, OHv), 7.64 (s, 4H, OHh) ppm. IR mmax: 830
(P = S); 960, 1025 (P-O-C); 3,200–3,600 (OH) cm-1
.
)
phosphate (UMPS2- or adenosine 50-O-thiomonophosphate
ESI–MS: m/z = 1401 [M ? H]? (calcd. M = 1400). Anal.
calcd. for C64H60O20P4S4: C, 54.86; H, 4.29; P, 8.86; S,
9.14. Found: C, 54.73; H, 4.11; P, 8.61; S, 8.96.
(AMPS2-). J. Biol. Inorg. Chem. 7, 405–415 (2002)
9. Mikulski, C.M., Chaudan, S., Rabin, R., Karayannis, N.M.: Well-
defined adducts of triethyl thiophosphate with some metal per-
chlorates. J. Inorg. Nucl. Chem. 43, 2017–2020 (1981)
10. Wang, H., Li, Zh, Liu, Y.: Synthesis and cationic selectivity
studies of novel calix[4]arene derivatives containing heteroatom
at the lower rim. Sci. China Ser. B Chem. 50, 654–659 (2007)
11. Knyazeva, I.R., Burilov, A.R., Fazleeva, G.M., Nuretdinov, I.A.,
Gryaznova, T.V., Budnikova, Y.G., Khrisanforova, V.V.,
Gubaidullin, A.T., Gabidullin, B.M., Syakaev, V.V., Pudovik,
M.A., Konovalov, A.I.: New calix[4]resorcinols with thiopho-
sphoryl-containing fragments. Phosphorus Sulfur Silicon Relat.
Elem. 186, 1972–1980 (2011)
12. Maslennikova, V.I., Serkova, O.S., Gruner, M., Goutal, S., Bauer,
I., Habicher, W.D., Lyssenko, K.A., Antipin, M.Y., Nifantyev,
E.E.: Synthesis and conformation analysis of new phosphorylated
calix[4]resorcinarenes. Eur. J. Org. Chem. 23, 4884–4893 (2004)
13. Bibal, B., Declercq, J.-P., Dutasta, J.-P., Tinantb, B., Valad,
A.-G.: Thiophosphorylated cavitand: structure and affinity
towards soft metal ions. Tetrahedron 59, 5849–5854 (2003)
14. Sheldrick, G.M.: SHELXTL v.6.12, structure determination
software suite. Bruker AXS, Madison (2000)
Calix[4]resorcinol 5c
was obtained as light-pink powder by a method analogous
to that used to prepare 5a by the treatment of pyrogallol 4c
(0.26 g, 2.06 mmol) with aldehyde 3 (0.5 g, 2.06 mmol).
Yield 0.58 g (80 %), Mp [ 196 ꢁC (dec.). 31P NMR
(166.93 MHz, DMSO-d6): d = 78.8 ppm. 1H NMR
(600 MHz, DMSO-d6) d 4.51 (m, 16H, H10), 5.07 (s, 2H,
H3h), 5.66 (s, 4H, H1), 5.93 (s, 2H, H3v), 6.62 (d,
3JHH = 8.4, 8H, H7), 6.73 (d, JHH = 8.4, 8H, H8), 7.61
3
(s, 6H, OHv), 7.71 (s, 6H, OHh) ppm. IR mmax: 831 (P = S);
924, 1026 (P-O-C); 3,100–3,600 (OH) cm-1. ESI–MS: m/
z = 1409 [M ? H]? (calcd. M = 1408). Anal. calcd. for
C60H52O24P4S4: C, 51.14; H, 3.69; P, 8.81; S, 9.09. Found:
C, 51.11; H, 3.30; P, 8.53; S, 8.98.
15. Farrugia, L.J.: WinGX suite for small-molecule single-crystal
crystallography. J. Appl. Cryst. 32, 837–838 (1999)
16. Spek, A.L.: Single-crystal structure validation with the program
PLATON. J. Appl. Cryst. 36, 7–13 (2003)
Acknowledgments The work was supported by the Russian Foun-
dation for Basic Research (grant 11-03-00416-a) and DAAD
(Deutscher Akademischer Austauschdienst).
17. Yamasaki, T., Sato, T.: Heterocyclic compounds containing
phosphorus. I: on the syntheses of five membered monothio
phosphates. Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 6, 384 (1954)
123