ChemComm
Communication
5 J. M. Kinsella and A. Ivanisevic, Langmuir, 2007, 23, 3886–3890.
6 F. A. Aldaye, A. L. Palmer and H. F. Sleiman, Science, 2008, 321,
1795–1799.
7 M. Endo and H. Sugiyama, ChemBioChem, 2009, 10, 2420–2443.
8 B. Sacca and C. M. Niemeyer, Angew. Chem., Int. Ed., 2012, 51, 58–66.
9 F. Diezmann and O. Seitz, Chem. Soc. Rev., 2011, 40, 5789–5801.
10 Y. N. Teo and E. T. Kool, Chem. Rev., 2012, 112, 4221–4245.
11 M. Kwak and A. Herrmann, Chem. Soc. Rev., 2011, 40, 5745–5755.
12 A. Heckel and M. Famulok, Biochimie, 2008, 90, 1096–1107.
13 M. Meng, C. Ahlborn, M. Bauer, O. Plietzsch, S. A. Soomro, A. Singh,
T. Mu¨ller, W. Wenzel, S. Brase and C. Richert, ChemBioChem, 2009,
10, 1335–1339.
14 S. H. Weisbrod and A. Marx, Chem. Commun., 2008, 5675–5685.
15 R. Varghese and H. A. Wagenknecht, Chem. Commun., 2009, 2615–2624.
16 V. V. Filichev and E. B. Pedersen, in Wiley Encycl. Chem. Biol., ed.
T. P. Begley, Wiley, Hoboken, 2009, 1, pp. 493–524.
17 H. Kashida, X. Liang and H. Asanuma, Curr. Org. Chem., 2009, 13,
1065–1084.
Fig. 4 Fluorescence spectra of single strand ON7 and hybrids D2 and D4;
¨
18 V. L. Malinovskii, D. Wenger and R. Haner, Chem. Soc. Rev., 2010,
conditions as in Fig 2.
39, 410–422.
19 F. Seela and S. A. Ingale, J. Org. Chem., 2010, 75, 284–295.
20 O. Khakshoor and E. T. Kool, Chem. Commun., 2011, 47, 7018–7024.
21 E. Stulz, Chem.–Eur. J., 2012, 18, 4456–4469.
22 E. Socher, A. Knoll and O. Seitz, Org. Biomol. Chem., 2012, 10, 7363–7371.
23 J. Krim, M. Taourirte, C. Gruenewald, I. Krstic and J. W. Engels,
Synthesis, 2013, 396–405.
24 F. D. Lewis, Y. F. Zhang and R. L. Letsinger, J. Am. Chem. Soc., 1997,
119, 5451–5452.
25 E. V. Bichenkova, A. R. Sardarian, A. N. Wilton, P. Bonnet,
R. A. Bryce and K. T. Douglas, Org. Biomol. Chem., 2006, 4, 367–378.
¨
26 I. Trkulja and R. Haner, Bioconjugate Chem., 2007, 18, 289–292.
¨
27 I. Trkulja and R. Haner, J. Am. Chem. Soc., 2007, 129, 7982–7989.
¨
28 S. Uno, C. Dohno, H. Bittermann, V. L. Malinovskii, R. Haner and
K. Nakatani, Angew. Chem., Int. Ed., 2009, 48, 7362–7365.
29 K. C. Hannah and B. A. Armitage, Acc. Chem. Res., 2004, 37, 845–853.
30 H. Kashida, H. Asanuma and M. Komiyama, Angew. Chem., Int. Ed.,
2004, 43, 6522–6525.
¨
31 L. I. Markova, V. L. Malinovskii, L. D. Patsenker and R. Haner, Org.
Biomol. Chem., 2012, 10, 8944–8947.
32 M. A. Abdalla, J. Bayer, J. O. Radler and K. Mu¨llen, Angew. Chem., Int.
Ed., 2004, 43, 3967–3970.
33 M. Balaz, A. E. Holmes, M. Benedetti, P. C. Rodriguez, N. Berova,
K. Nakanishi and G. Proni, J. Am. Chem. Soc., 2005, 127, 4172–4173.
34 F. D. Lewis, L. G. Zhang, X. Y. Liu, X. B. Zuo, D. M. Tiede, H. Long
and G. C. Schatz, J. Am. Chem. Soc., 2005, 127, 14445–14453.
Fig. 5 Titration of ON7 (starting conc. 1.0 mM) by addition of ON8 (individual
steps = 0.25 mM); arrow indicates increasing ON8 conc.; photo: AIE of D4 (right)
compared to single strand ON7; conditions as in Fig. 2.
(FF B 0.40). These findings reflect a steady growth of the
emission with an increasing degree of molecular aggregation,
i.e. the compact arrangement of DATPEs effectively suppresses
the intramolecular rotation.42 The effect of AIE is best illustrated
in the example shown in Fig. 5, which represents the change in
fluorescence between single strand ON7 and duplex D4. Duplex
formation results in a 10-fold increased emission.
¨
35 R. Haner, F. Samain and V. L. Malinovskii, Chem.–Eur. J., 2009, 15,
5701–5708.
¨
36 D. Wenger, V. L. Malinovskii and R. Haner, Chem. Commun., 2011,
47, 3168–3170.
¨
37 F. Garo and R. Haner, Angew. Chem., Int. Ed., 2012, 51, 916–919.
38 J. G. Woller, J. K. Hannestad and B. Albinsson, J. Am. Chem. Soc.,
2013, 135, 2759–2768.
39 O. N. Sancho, W. R. Browne and G. Roelfes, Chem.–Eur. J., 2013, 19,
2457–2461.
In conclusion, we have demonstrated that AIE can be con-
trolled by DNA hybridization. Two AIE-active, DATPE building
blocks were incorporated into oligonucleotides. Hybridization of
complementary strands leads to molecular aggregation of the
DATPE units. Quantum yields in hybrids reach values close to
those of the monomers in the aggregated state. Considering the
ease of their synthesis and their unique fluorescence properties,
DATPEs are promising candidates for diagnostic probes or
DNA-based nanostructures with special optical properties.
This work was supported by the Swiss National Foundation
(Grant 200020-132581).
40 Z. Zhao, J. W. Lam and B. Z. Tang, J. Mater. Chem., 2012, 22, 23726–23740.
41 N. B. Shustova, T. C. Ong, A. F. Cozzolino, V. K. Michaelis, R. G.
Griffin and M. Dinca, J. Am. Chem. Soc., 2012, 134, 15061–15070.
42 Y. Hong, J. W. Lam and B. Z. Tang, Chem. Soc. Rev., 2011, 40, 5361–5388.
43 Y. Hong, H. Xiong, J. W. Y. Lam, M. Haeussler, J. Liu, Y. Yu,
Y. Zhong, H. H. Sung, I. D. Williams, K. S. Wong and B. Z. Tang,
Chem.–Eur. J., 2010, 16, 1232–1245.
44 H. Tong, Y. Hong, Y. Dong, M. Haeussler, Z. Li, J. W. Lam, Y. Dong,
H. H. Sung, I. D. Williams and B. Z. Tang, J. Phys. Chem. B, 2007,
111, 11817–11823.
45 M. Wang, D. Zhang, G. Zhang and D. Zhu, Chem. Commun., 2008,
4469–4471.
46 C. W. T. Leung, Y. Hong, S. Chen, E. Zhao, J. W. Y. Lam and
B. Z. Tang, J. Am. Chem. Soc., 2013, 135, 62–65.
47 Y. Yu, J. Liu, Z. Zhao, K. M. Ng, K. Q. Luo and B. Z. Tang, Chem.
Commun., 2012, 48, 6360–6362.
48 J. Kypr, I. Kejnovska, D. Renciuk and M. Vorlickova, Nucleic Acids
Res., 2009, 37, 1713–1725.
Notes and references
1 N. C. Seeman, Nature, 2003, 421, 427–431.
49 Judging from circular dichroism spectroscopy, the presence of 70%
TFE does not significantly affect the B-form conformation of the
present hybrids (ESI†).
2 J. Wengel, Org. Biomol. Chem., 2004, 2, 277–280.
3 K. V. Gothelf and T. H. Labean, Org. Biomol. Chem., 2005, 3, 4023–4037.
4 N. L. Rosi and C. A. Mirkin, Chem. Rev., 2005, 105, 1547–1562.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 5835--5837 5837