weak coordination has been studied to a great extent.1,2
However, there is still a need to develop useful functional
groups for direct ortho-selective CÀH bond cleavage,
which will provide a significant effect in synthetic applica-
tions. Encouraged by a number of transition metal-
catalyzed cyclizations using a carboxylic acid group,8 we
imagined that CÀH bond functionalization with phos-
phonic acid monoesters would perform as an desirable
platform for the preparation of phosphaisocoumarins,
which may be phosphorus heterocycles exhibiting effective
biological activity.9
Scheme 1. Rh-Catalyzed Cyclization Using Alkynes and
Phosphonic Acid Monoester
Moreover, to date, phosphaisocoumarin scaffolds have
been synthesized through intramolecular cyclization.
Although alkynylarylphosphates9k or their monoesters9g,h
have been used in the cyclization (eqs 1 and 2), as far as we
know, a rhodium-catalyzed cyclization using alkynes and
arylphosphonic acid monoesters has not been utilized for
the synthesis of phosphaisocoumarins.
Table 1. Reaction Optimizationa
temp time yieldb
entry
oxidant (equiv)
solvent
(°C)
(h)
(%)
1
2
3
4
5
6
7
8
9
Cu(OAc)2 H2O (0.1)
DMF
DMF
120
120
18
18
18
18
18
18
18
18
16
16
16
16
16
16
16
0
0
3
Ag2CO3 (0.5)
Ag2CO3 (0.5)
Ag2CO3 (0.5)
Ag2CO3 (0.5)
Ag2CO3 (0.5)
Ag2CO3 (0.5)
Ag2CO3 (0.5)
Ag2CO3 (0.5)
1,4-dioxane 110
xylene 120
30
10
15
0
mesitylene 170
CF3CH2OH 90
C6F5OH
t-AmOH
t-BuOH
t-BuOH
t-BuOH
t-BuOH
t-BuOH
t-BuOH
t-BuOH
150
110
90
0
55
57
0
Furthermore, to the best of our knowledge, methods
using phosphorus compound as a directing group is few.10
Inspired by recent our interests11 in organophosphorus
compounds, we decided to examine CÀH bond functio-
nalization with phosphonic acid monoester. Herein, we
have described Rh-catalyzed cyclization using alkynes and
phosphonic acid monoester for the synthesis of phosphai-
socoumarins (Scheme 1).
10 AgSbF6 (0.5)
90
11 AgOTf (0.5)
12 AgOAc (0.5)
13 Ag2O (0.5)
90
0
90
45
0
90
14 Cu(OAc)2 H2O (0.5)
90
23
49
3
15 Ag2CO3 (0.5)/Cu(OAc)2
90
H2O (0.5)
3
16 Ag2CO3 (0.5)/AgOAc (0.5) t-BuOH
90
90
16
16
81
90
We started our studies with phenylphosphonic acid
monoester 1a (Table 1), which can be easily prepared from
17 Ag2CO3 (1)/AgOAc (1)
t-BuOH
a Reaction conditions: 1a (0.15 mmol), 2a (0.23 mmol), [Cp*RhCl2]2
(2 mol %), solvent (1 mL). b Isolated yields.
(7) (a) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010,
327, 315. (b) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int.
Ed. 2010, 49, 6169.
(8) (a) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362.
(b) Ackermann, L.; Pospech, J.; Graczyk, K.; Rauch, K. Org. Lett. 2012,
14, 930. (c) Chinnagolla, R. K.; Jeganmohan, M. Chem. Commun. 2012,
48, 2030.
hydrolysis of diethyl phenylphosphonate. Miura reported
that the oxidative coupling of benzoic acids with internal
alkynes effectively proceeds in the presence of [Cp*RhCl2]2
(9) (a) Seto, H.; Kuzuyama, T. Nat. Prod. Rep. 1999, 16, 589. (b)
Ruda, G. F.; Wong, P. E.; Alibu, V. P.; Norval, S.; Read, K. D.; Barrett,
M. P.; Gilbert, I. H. J. Med. Chem. 2010, 53, 6071. (c) Dillon, K. B.;
Mathey, F.; Nixon, J. F. Phosphorus: The Carbon Copy; John Wiley &
Sons: Chichester, 1998. (d) Li, X. S.; Zhang, D. W.; Pang, H.; Shen, F.; Fu, H.;
Jiang, Y. Y.; Zhao, Y. F. Org. Lett. 2005, 7, 4919. (e) Li, B.; Zhou, B.; Lu,
H.; Ma, L.; Peng, A.-Y. Eur. J. Med. Chem. 2010, 45, 1955. (f) Wei, T.;
Ding, Y.-X. J. Org. Chem. 2006, 71, 8489. (g) Peng, A.-Y.; Ding, Y.-X.
Org. Lett. 2004, 6, 1119. (h) Peng, A.-Y.; Ding, Y.-X. J. Am. Chem. Soc.
2003, 125, 15006. (i) Peng, A.-Y.; Ding, Y.-X. Org. Lett. 2005, 7, 3299. (j)
Sigal, I.; Loew, L. J. Am. Chem. Soc. 1978, 100, 6394. (k) Peng, A.-Y.;
Hao, F.; Li, B.; Wang, Z.; Du, Y. J. Org. Chem. 2008, 73, 9012.
(10) (a) Lewis, L. N.; Smith, J. F. J. Am. Chem. Soc. 1986, 108, 2728.
(b) Lewis, J. C.; Wu, J.; Bergman, R. G.; Ellman, J. A. Organometallics
2005, 24, 5737. (c) Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.;
Limmert, M. E. Angew. Chem., Int. Ed. 2003, 42, 112. (d) Meng, X.; Kim,
S. Org. Lett. 2013, 15, 1910. (f) Jeon, W. H.; Lee, T. S.; Kim, E. J.; Moon,
B.; Kang, J. Tetrahedron 2013, 69, 5152. (h) Chan, L. Y.; Cheong, L.;
Kim, S. Org. Lett. 2013, 15, 2186.
and Cu(OAc)2 H2O as catalyst and oxidant, respectively,
to produce the corresponding isocoumarin derivatives.8a
3
However, when [Cp*RhCl2]2 (2 mol %) and Cu(OAc)2
3
H2O (0.1 equiv) in DMF at 120 °C for 18 h under air8a
were applied to cyclization of phenylphosphonic acid
monoester, the reaction did not proceed unfortunately
(entry 1). Also, Ag2CO3 (0.5 equiv) as an oxidant was
not effective in DMF (entry 2). Although trifluoroethanol
and pentafluorophenol were not successful solvents
(entries 6 and 7) with Ag2CO3 (0.5 equiv), 1,4-dioxane,
xylene, and mesitylene gave the desired phosphaisocou-
marin 3a in 10À30% yields (entries 3À5). tert-Butyl alco-
hol was found to be the solvent of choice (entry 9). Next,
a number of oxidants were tested and thus, the reaction
was relatively sensitive to the choice of oxidants, with
which AgSbF6, AgOTf and Ag2O were entirely ineffective
(11) (a) Mo, J.; Kang, D.; Eom, D.; Kim, S. H.; Lee, P. H. Org. Lett.
2013, 15, 26. (b) Chan, L. Y.; Kim, S.; Ryu, T.; Lee, P. H. Chem.
Commun. 2013, 49, 4682. (c) Chary, B. C.; Kim, S.; Park, Y.; Kim, J.;
Lee, P. H. Org. Lett. 2013, 15, 2692.
Org. Lett., Vol. 15, No. 13, 2013
3359