Moreover, due to the presence of the transition-metal
impurities, it is difficult to purify the final products. In
the past few decades, numerous methods have been re-
ported for the synthesis of biaryls through oxidative cross-
coupling using oxidizing agents bearing heavy metals
such as PbIV, RuIV, TlIII, VV, and RhIII.9 However, these
oxidants are expensive and highly toxic. In this context,
oxidative cross-coupling of two nonactivated arenes by
using hypervalent iodine reagents is one of the convenient
and environmentally benign methods for the synthesis of
biaryls.10
Recently, Waldvogel et al. reported the first anodic and
selective cross-coupling reaction between 2-methoxy-
phenol and an electron-rich arene by using boron-doped
diamond electrodes.11 Kita et al. developed a method for
the synthesis of oxygenated biaryls by the addition of
electron-rich arenes to p-benzoquinone monoketals in a
fluorinated solvent in the presence of montmorillonite.12
Herein we present a Lewis acid mediated rapid syn-
thesis of oxygenated unsymmetrical biaryls from simple
2-methoxyphenols and electron-rich arenes via the in situ
generated masked o-benzoquinones.
intermediates in the synthesis of many natural products.14
These are unique molecules containing diene, R,β- and
γ,δ-unsaturated carbonyl and allyl acetal functionality
which can readily undergo DielsꢀAlder, photochemical,
and nucleophilic addition reactions.15 In harnessing the
reactivity of MOBs, we were interested in adding electron-
richspeciestotheseelectron-deficientenones. Ourworking
hypothesis for the design of unsymmetrical biaryls is
depicted in Scheme 1. It was envisioned that the electron-
rich arenes can add at position 3 or 5 of the in situ generated
MOB, to provide biaryls of type A and/or B, respectively.
In a pilot experiment, 4-bromoguaiacol (1a) was dear-
omatized with DIB in MeOH in the presence of 1,3-
dimethoxybenzene and the reaction was stirred for 24 h
at rt. Only MOB 2a was observed from the reaction mix-
ture. In another reaction, when 1 equiv of BF3 Et2O was
3
added to the reaction mixture at 0 °C, 4-bromo-2,5-
dimethoxyphenol was obtained within 1 min in 36% yield
along with 41% of 1a obtained from the rearomatization
of MOB 2a. To avoid the nucleophilic addition of metha-
nol on the MOBs, we have removed the methanol after
oxidation from a methanolic MOB solution by rotary
evaporator in vacuo and then the residue was diluted with
dichloromethane. 1,3-Dimethoxybenzene (3) followed by
6,6-Dialkoxycyclohexa-2,4-dienones, commonlyknown
as o-benzoquinone monoketals or masked o-benzoqui-
nones (MOBs),13 are highly reactive cyclic conjugated
dienones. These can be easily generated in situ from the
corresponding 2-methoxyphenol by using hypervalent io-
dine reagents such as diacetoxyiodobenzene (DIB) and
bis-(trifluoro-acetoxy)iodobenzene (PIFA) in methanol.
These linearly conjugated cyclohexadienones are key
BF3 Et2O were added to this reaction mixture at 0 °C,
and to our surprise, biaryl 3a was obtained in 65% yield in
3
Scheme 1. Working Hypothesis for the Synthesis of Oxygenated
Biaryls
(8) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (b)
Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. J. Am. Chem.
Soc. 2004, 126, 15195. (c) Schweizer, S.; Becht, J.-M.; Drian, C. L. Org.
Lett. 2007, 9, 3777. (d) Phapale, V. B.; Cardenas, D. J. Chem. Soc. Rev.
2009, 38, 1598. (e) Pham, P. D.; Vitz, J.; Chamignon, C.; Martel, A.;
Legoupy, S. Eur. J. Org. Chem. 2009, 3249. (f) Guan, B. -T.; Lu, X.-Y.;
Zheng, Y.; Yu, D. -G.; Wu, T.; Li, K.-L.; Li, B.-J.; Shi, Z.-J. Org. Lett.
€
2010, 12, 396. (g) Lee, D.-H.; Jin, M.-J. Org. Lett. 2011, 13, 252. (h) Noel,
T.; Kuhn, S.; Musacchio, A. J.; Jensen, K. F.; Buchwald, S. L. Angew.
Chem., Int. Ed. 2011, 50, 5943. (i) Chen, H.; Huang, Z.; Hu, X.; Tang, G.;
Xu, P.; Zhao, Y.; Cheng, C.-H. J. Org. Chem. 2011, 76, 2338.
(9) (a) Taylor, E. C.; Andrade, J. G.; Rall, G. J. H.; McKillop, A.
J. Am. Chem. Soc. 1980, 102, 6513. (b) Cambie, R. C.; Crow, P. A.;
Rutledge, P. S.; Woodgate, P. D. Aust. J. Chem. 1988, 41, 897. (c)
Feldman, K. S.; Ensel, S. M. J. Am. Chem. Soc. 1994, 116, 3357. (d)
Mizuno, H.; Sakurai, H.; Amaya, T.; Hirao, T. Chem. Commun. 2006,
5042. (e) Vogler, T.; Studer, A. Org. Lett. 2008, 10, 129. (f) Wencel-
Delord, J.; Nimphius, C.; Patureau, F. W.; Glorius, F. Angew. Chem.,
Int. Ed. 2012, 51, 2247. (g) Kuhl, N.; Hopkinson, M. N.; Glorius, F.
Angew. Chem., Int. Ed. 2012, 51, 8230.
(10) (a) Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc.
2007, 129, 12072. (b) Dohi, T.; Ito, M.; Morimoto, K.; Iwata, M.; Kita,
Y. Angew. Chem., Int. Ed. 2008, 47, 1301. (c) Ashenhurst, J. A. Chem.
Soc. Rev. 2010, 39, 540. (d) Lei, A.; Liu, W.; Liu, C.; Chen, M. Dalton
Trans. 2010, 39, 10352.
1 min. This product was obtained from the addition of 1,3-
dimethoxybenzene at the C-2 position (R-addition) of the
MOB 2a in an anti-Michael type addition followed by
rearomatization. In order to obtain the optimal condi-
tions, we carried out the reaction of 4-bromoguaiacol (1a)
with 1,3-dimethoxybenzene (3) in the presence of DIB
(11) (a) Kirste, A.; Schnakenburg, G.; Stecker, F.; Fischer, A.;
Waldvogel, S. R. Angew. Chem., Int. Ed. 2010, 49, 971. (b) Kirste, A.;
Schnakenburg, G.; Waldvogel, S. R. Org. Lett. 2011, 13, 3126. (c) Kirste,
A.; Elsler, B.; Schnakenburg, G.; Waldvogel, S. R. J. Am. Chem. Soc.
2012, 134, 3571.
(12) (a) Dohi, T.; Washimi, N.; Kamitanaka, T.; Fukushima, K.; Kita,
Y. Angew. Chem., Int. Ed. 2011, 50, 6142. (b) Dohi, T.; Kamitanaka, T.;
Watanabe, S.; Hu, Y.; Washimi, N.; Kita, Y. Chem.;Eur. J. 2012, 18,
13614.
(13) (a) Liao, C.-C. Synthetic Applications of Masked Benzoquinones.
In Modern Methodology in Organic Synthesis; Sheno, T., Ed.; Kodansha:
Tokyo, 1992; p 409. (b) Liao, C.-C.; Peddinti, R. K. Acc. Chem. Res. 2002,
35, 856.
ꢀ
(14) (a) Quideau, S.; Pouysegu, L. Org. Prep. Proc. Int. 1999, 31, 617.
(b) Singh, V. Acc. Chem. Res. 1999, 32, 324. (c) Magdziak, D.; Meek,
S. J.; Pettus, T. R. R. Chem. Rev. 2004, 104, 1383. (d) Liao, C.-C. Pure
Appl. Chem. 2005, 77, 1221. (e) Hsu, D.-S.; Hsu, P.-Y.; Lee, Y.-C.; Liao,
C.-C. J. Org. Chem. 2008, 73, 2554. (f) Snyder, S. A.; Kontes, F. J. Am.
Chem. Soc. 2009, 131, 1745. (g) Roche, S. P.; Porco, J. A., Jr. Angew.
Chem., Int. Ed. 2011, 50, 4068. (h) Suzuki, T.; Sasaki, A.; Egashira, N.;
Kobayashi, S. Angew. Chem., Int. Ed. 2011, 50, 9177.
(15) (a) Hsieh, M.-F.; Rao, P. D.; Liao, C.-C. Chem. Commun. 1999,
1441. (b) Yen, C.-F.; Peddinti, R. K.; Liao, C.-C. Org. Lett. 2000, 2,
2909. (c) Hsu, P.-Y.; Peddinti, R. K.; Chittimalla, S. K.; Liao, C.-C.
J. Org. Chem. 2005, 70, 9156. (d) Kao, T.-C.; Chuang, G. J.; Liao, C.-C.
Angew. Chem., Int. Ed. 2008, 47, 7325.
Org. Lett., Vol. 15, No. 14, 2013
3547