ACS Catalysis
Page 4 of 6
furnishes the indole product 3 and a Ru0 species (F), the latter
of which is oxidized on the anode to regenerate the catalyticalꢀ
ly active RuII complex. Correspondingly, protons are reduced
on the cathode to generate H2, which obviates the need for
external oxidants or Hꢀacceptors. In the preparative scale elecꢀ
trolysis, the catalyst resting state was most likely more reꢀ
sistant to cathodic reduction than the protons, allowing the use
of an undivided cell.
(10) Tang, S.; Liu, Y.; Lei, A. Electrochemical Oxidative Crossꢀ
coupling with Hydrogen Evolution: A Green and Sustainable Way for
Bond Formation. Chem 2018, 4, 27–45.
1
2
3
4
5
6
7
8
(11) Hayashi, R.; Shimizu, A.; Yoshida, J.ꢀi. The Stabilized Cation
Pool Method: Metalꢀ and OxidantꢀFree Benzylic C–H/Aromatic C–H
CrossꢀCoupling. J. Am. Chem. Soc. 2016, 138, 8400–8403.
(12) Gao, W.ꢀJ.; Li, W.ꢀC.; Zeng, C.ꢀC.; Tian, H.ꢀY.; Hu, L.ꢀM.;
Little, R. D. Electrochemically Initiated Oxidative Amination of Benꢀ
zoxazoles Using Tetraalkylammonium Halides As Redox Catalysts. J.
Org. Chem. 2014, 79, 9613–9618.
(13) Rosen, B. R.; Werner, E. W.; O’Brien, A. G.; Baran, P. S. Toꢀ
tal Synthesis of Dixiamycin B by Electrochemical Oxidation. J. Am.
Chem. Soc. 2014, 136, 5571–5574.
In summary, we have demonstrated that electric current can
be used to promote Ruꢀcatalyzed C–H activation/annulation
processes. Our method can be used to prepare a diverse range
of indole derivatives from easily accessible alkynes and aniꢀ
line derivatives, and is fully compatible with a simple undividꢀ
ed cell.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(14) Wang, P.; Tang, S.; Huang, P.; Lei, A. Electrocatalytic Oxiꢀ
dantꢀFree Dehydrogenative C−H/S−H CrossꢀCoupling. Angew.
Chem., Int. Ed. 2017, 56, 3009–3013.
(15) Schulz, L.; Enders, M.; Elsler, B.; Schollmeyer, D.; Dyballa,
K. M.; Franke, R.; Waldvogel, S. R. Reagentꢀ and MetalꢀFree Anodic
C−C CrossꢀCoupling of Aniline Derivatives. Angew. Chem., Int. Ed.
2017, 56, 4877–4881.
(16) Fu, N.; Li, L.; Yang, Q.; Luo, S. Catalytic Asymmetric Elecꢀ
trochemical Oxidative Coupling of Tertiary Amines with Simple
Ketones. Org. Lett. 2017, 19, 2122–2125.
(17) Xiong, P.; Xu, H.ꢀH.; Xu, H.ꢀC. Metalꢀ and ReagentꢀFree Inꢀ
tramolecular Oxidative Amination of Triꢀ and Tetrasubstituted Alꢀ
kenes. J. Am. Chem. Soc. 2017, 139, 2956–2959.
(18) Wu, Z.ꢀJ.; Xu, H.ꢀC. Synthesis of C3ꢀFluorinated Oxindoles
through ReagentꢀFree CrossꢀDehydrogenative Coupling. Angew.
Chem., Int. Ed. 2017, 56, 4734–4738.
(19) Gieshoff, T.; Kehl, A.; Schollmeyer, D.; Moeller, K. D.;
Waldvogel, S. R. Insights into the Mechanism of Anodic N–N Bond
Formation by Dehydrogenative Coupling. J. Am. Chem. Soc. 2017,
139, 12317–12324.
(20) Wang, Q.ꢀQ.; Xu, K.; Jiang, Y.ꢀY.; Liu, Y.ꢀG.; Sun, B.ꢀG.;
Zeng, C.ꢀC. Electrocatalytic Minisci Acylation Reaction of Nꢀ
Heteroarenes Mediated by NH4I. Org. Lett. 2017, 19, 5517–5520.
(21) FolgueirasꢀAmador, A. A.; Qian, X.ꢀY.; Xu, H.ꢀC.; Wirth, T.
Catalystꢀ and SupportingꢀElectrolyteꢀFree Electrosynthesis of Benzoꢀ
thiazoles and Thiazolopyridines in Continuous Flow. Chem. Eur. J.
2018, 24, 487–491.
AUTHOR INFORMATION
Corresponding Author
*haichao.xu@xmu.edu.cn
Author Contributions
†F.X. and Y.ꢀJ.L. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ASSOCIATED CONTENT
Supporting Information. The experimental procedure, characterꢀ
ization data, and copies of 1H and 13C NMR spectra. The Supportꢀ
ing Information is available free of charge via the Internet at
ACKNOWLEDGMENT
We are grateful for financial support of this research from MOST
(2016YFA0204100), NSFC (21672178), the “Thousand Youth
Talents Plan”, and Fundamental Research Funds for the Central
Universities.
(22) Jiao, K.ꢀJ.; Zhao, C.ꢀQ.; Fang, P.; Mei, T.ꢀS. Palladium Cataꢀ
lyzed C–H functionalization with Electrochemical Oxidation. Tetra-
hedron Lett. 2017, 58, 797–802.
REFERENCES
(23) Yang, Q.ꢀL.; Li, Y.ꢀQ.; Ma, C.; Fang, P.; Zhang, X.ꢀJ.; Mei,
T.ꢀS. PalladiumꢀCatalyzed C(sp3)–H Oxygenation via Electrochemiꢀ
cal Oxidation. J. Am. Chem. Soc. 2017, 139, 3293–3298.
(24) Amatore, C.; Cammoun, C.; Jutand, A. Electrochemical Recyꢀ
cling of Benzoquinone in the Pd/BenzoquinoneꢀCatalyzed HeckꢀType
Reactions from Arenes. Adv. Synth. Catal. 2007, 349, 292–296.
(25) Shrestha, A.; Lee, M.; Dunn, A. L.; Sanford, M. S. Palladiumꢀ
Catalyzed C–H Bond Acetoxylation via Electrochemical Oxidation.
Org. Lett. 2018, 20, 204–207.
(26) Kakiuchi, F.; Kochi, T.; Mutsutani, H.; Kobayashi, N.; Urano,
S.; Sato, M.; Nishiyama, S.; Tanabe, T. PalladiumꢀCatalyzed Aroꢀ
matic C−H Halogenation with Hydrogen Halides by Means of Elecꢀ
trochemical Oxidation. J. Am. Chem. Soc. 2009, 131, 11310–11311.
(27) Sauermann, N.; Meyer, T. H.; Tian, C.; Ackermann, L. Elecꢀ
trochemical CobaltꢀCatalyzed C–H Oxygenation at Room Temperaꢀ
ture. J. Am. Chem. Soc. 2017, 139, 18452–18455.
(28) Tian, C.; Massignan, L.; Meyer, T. H.; Ackermann, L. Elecꢀ
trochemical C−H/N−H Activation by WaterꢀTolerant Cobalt Catalysis
at Room Temperature. Angew. Chem., Int. Ed. 2018, 57, 2383–2387.
(29) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Ruthenium(II)ꢀ
Catalyzed C–H Bond Activation and Functionalization. Chem. Rev.
2012, 112, 5879–5918.
(30) De Sarkar, S.; Liu, W.; Kozhushkov, S. I.; Ackermann, L.
Weakly Coordinating Directing Groups for Ruthenium(II)ꢀCatalyzed
C–H Activation. Adv. Synth. Catal. 2014, 356, 1461–1479.
(31) Thirunavukkarasu, V. S.; Kozhushkov, S. I.; Ackermann, L.
C–H Nitrogenation and Oxygenation by Ruthenium Catalysis. Chem.
Commun. 2014, 50, 29–39.
(1) Gulías, M.; Mascareñas, J. L. MetalꢀCatalyzed Annulations
through Activation and Cleavage of C−H Bonds. Angew. Chem., Int.
Ed. 2016, 55, 11000–11019.
(2) Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.; Ripin,
D. H. B. LargeꢀScale Oxidations in the Pharmaceutical Industry.
Chem. Rev. 2006, 106, 2943–2989.
(3) Francke, R.; Little, R. D. Redox Catalysis in Organic Electroꢀ
synthesis: Basic Principles and Recent Developments. Chem. Soc.
Rev. 2014, 43, 2492–2521.
(4) FrontanaꢀUribe, B. A.; Little, R. D.; Ibanez, J. G.; Palma, A.;
VasquezꢀMedrano, R. Organic Electrosynthesis: A Promising Green
Methodology in Organic Chemistry. Green Chem. 2010, 12, 2099–
2119.
(5) Yoshida, J.ꢀi.; Kataoka, K.; Horcajada, R.; Nagaki, A. Modern
Strategies in Electroorganic Synthesis. Chem. Rev. 2008, 108, 2265–
2299.
(6) Horn, E. J.; Rosen, B. R.; Baran, P. S. Synthetic Organic Elecꢀ
trochemistry: An Enabling and Innately Sustainable Method. ACS
Cent. Sci. 2016, 2, 302–308.
(7) Schäfer, H. J. Contributions of Organic Electrosynthesis to
Green Chemistry. C. R. Chim. 2011, 14, 745–765.
(8) Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic Elecꢀ
trochemical Methods Since 2000: On the Verge of a Renaissance.
Chem. Rev. 2017, 117, 13230–13319.
(9) Jiang, Y.; Xu, K.; Zeng, C. Use of Electrochemistry in the Synꢀ
thesis of Heterocyclic Structures. Chem. Rev. 2017, DOI:
10.1021/acs.chemrev.7b00271.
ACS Paragon Plus Environment