ChemComm
Communication
(e) M. Wasa and J.-Q. Yu, J. Am. Chem. Soc., 2008, 130, 14058;
( f ) J.-J. Li, T.-S. Mei and J.-Q. Yu, Angew. Chem., Int. Ed., 2008,
47, 6452; (g) W. C. P. Tsang, N. Zheng and S. L. Buchwald, J. Am.
Chem. Soc., 2005, 127, 14560.
4 Selected examples of catalytic C–H functionalizations; for amination–
amidation: (a) K.-H. Ng, Z. Zhou and W.-Y. Yu, Org. Lett., 2012,
14, 272; (b) K.-H. Ng, F.-N. Ng and W.-Y. Yu, Chem. Commun., 2012,
48, 11680; (c) K.-H. Ng, A. S. C. Chan and W.-Y. Yu, J. Am. Chem. Soc.,
2010, 132, 12862; (d) H.-Y. Thu, W.-Y. Yu and C.-M. Che, J. Am. Chem.
Soc., 2006, 128, 9048; for acylation: (e) C.-W. Chan, Z. Zhou and
W.-Y. Yu, Adv. Synth. Catal., 2011, 353, 2999; ( f ) C.-W. Chan, Z. Zhou,
A. S. C. Chan and W.-Y. Yu, Org. Lett., 2010, 12, 3926; (g) W.-Y. Yu,
W. N. Sit, K.-M. Lai, Z. Zhou and A. S. C. Chan, J. Am. Chem. Soc., 2008,
130, 3304; for arylation: (h) W.-Y. Yu, W. N. Sit, Z. Zhou and A. S. C.
Chan, Org. Lett., 2009, 11, 3174; for carbenoid insertion:
(i) W.-W. Chan, S.-F. Lo, Z. Zhou and W.-Y. Yu, J. Am. Chem. Soc.,
2012, 134, 13565; ( j) W.-W. Chan, T.-L. Kwong and W.-Y. Yu, Org.
Biomol. Chem., 2012, 10, 3749; (k) W.-W. Chan, S.-H. Yeung, Z. Zhou,
A. S. C. Chan and W.-Y. Yu, Org. Lett., 2010, 12, 604.
Scheme 2 Proposed mechanism.
5 For Pd-catalyzed intermolecular C–H amidations, see: (a) K. Sun,
Y. Li, T. Xiong, J. Zhang and Q. Zhang, J. Am. Chem. Soc., 2011,
133, 1694; (b) B. Xiao, T.-J. Gong, Z.-J. Liu and L. Liu, J. Am. Chem.
Soc., 2011, 133, 1466; (c) X.-Y. Liu, P. Gao, Y.-W. Shen and
Y.-M. Liang, Org. Lett., 2011, 13, 4196.
6 For some recent examples of Cu-mediated intermolecular C–H
amination on electron-rich arenes, see: (a) C. Tang and N. Jiao,
J. Am. Chem. Soc., 2012, 134, 18924; (b) N. Matsuda, K. Hirano,
T. Satoh and M. Miura, Org. Lett., 2011, 13, 2860; (c) A. John and
K. M. Nicholas, J. Org. Chem., 2011, 76, 4158; (d) T. Kawano,
K. Hirano, T. Satoh and M. Miura, J. Am. Chem. Soc., 2010,
132, 6900; (e) D. Monguchi, T. Fujiwara, H. Furukawa and A. Mori,
Org. Lett., 2009, 11, 1607; ( f ) Q. Wang and S. L. Schreiber, Org. Lett.,
2009, 11, 5178.
7 For recent examples of aromatic C–H amidation–amination under
metal-free conditions, see: (a) R. Samanta, J. O. Bauer, C. Strohmann
and A. P. Antonchick, Org. Lett., 2012, 14, 5518; (b) A. A. Kantak,
S. Potavathri, R. A. Barham, K. M. Romano and B. Deboef, J. Am.
Chem. Soc., 2011, 133, 19960; (c) S. Wertz, S. Kodama and A. Studer,
Angew. Chem., Int. Ed., 2011, 50, 11511; (d) H. J. Kim, J. Kim,
S. H. Cho and S. Chang, J. Am. Chem. Soc., 2011, 133, 16382.
8 For examples of intermolecular C–H activation–C–N bond formation
involving transition metal catalysts such as Au, Ag and Ru, see:
(a) M.-L. Louillat and F. W. Patureau, Org. Lett., 2013, 15, 164;
(b) L. Gu, B. S. Neo and Y. Zhang, Org. Lett., 2011, 13, 1872;
(c) S. H. Cho, J. Y. Kim, S. Y. Lee and S. Chang, Angew. Chem., Int.
Ed., 2009, 48, 9127.
The o-methyloxime group (QNOMe) can be removed by treating
the arylamine products in refluxing 6 M HCl for 2 h. For instance,
the acid deprotection of 3ca, 3fa, 3ga and 3ff afforded the corre-
sponding 2-acetyl-N-alkylanilines in 75–89% yields.15
Regarding the mechanism, the reaction should be initiated
by oxime-assisted C–H bond activation to form a rhodacyclic
complex (Scheme 2). Based on the two parallel reactions with 1a
and d5-1a as substrates, the kinetic isotope effect (kH/kD = 2) was
observed suggesting that cyclorhodation of the aryl C–H should
be rate-limiting. The Rh-catalyzed acetophenone aminations
exhibit a linear free energy relationship (r = ꢀ0.93) with the
Hammett spara constants. The small r value should not favor a
significant build-up of positive charge (e.g. Wheland intermediate)
at the cyclorhodation step. Furthermore, the stoichiometric
reactions of a cyclorhodated complex of 2-phenylpyridine with
a series of N-chloroalkylamines effected successful C–N coupling
reactions and afforded the arylamines being obtained in 79–93%
yields.15 Thus, the C–N bond formation step should proceed
by the coupling of the arylrhodium(III) complex with the
chloroamines.
In summary, Rh-catalyzed arene C–H bond amination using
monochlorinated primary amines was developed. This Rh-catalyzed
amination with monochlorinated primary amines comple-
ments the other related reactions with secondary amines and
amides as coupling partners. Application of the direct C–H
aminations for synthesis of natural products is under investiga-
tion and will be reported separately.
9 Recent example of Pd-catalyzed intermolecular direct aromatic C–H
amination, see: E. J. Yoo, S. Ma, T.-S. Mei, K. S. L. Chan and J.-Q. Yu,
J. Am. Chem. Soc., 2011, 133, 7652.
10 For recent reviews on Rh(III)-catalyzed C–H activation–C–C bond
formation, see: (a) F. W. Patureau, J. Wencel-Delord and F. Glorius,
Aldrichimica Acta, 2012, 45, 31; (b) G. Song, F. Wang and X. Li, Chem.
Soc. Rev., 2012, 41, 3651; (c) D. A. Colby, R. G. Bergman and
J. A. Ellan, Chem. Rev., 2010, 110, 624; (d) T. Satoh and M. Miura,
Chem.–Eur. J., 2010, 16, 11212. For selected recent examples, see:
˜
˜
˜
(e) N. Quinones, A. Seoane, R. Garcia-Fandino, J. L. Mascarenas and
M. Gulias, Chem. Sci., 2013, 4, 2874; ( f ) Y. Lian, R. G. Bergman,
L. D. Lavis and J. A. Ellman, J. Am. Chem. Soc., 2013, 135, 7122; (g) Z. Shi,
C. Grohmann and F. Glorius, Angew. Chem., Int. Ed., 2013, 52, 5393.
11 (a) J. Ryu, K. Shin, S. H. Park, J. Y. Kim and S. Chang, Angew. Chem.,
Int. Ed., 2012, 51, 9904; (b) C. Grohmann, H. Wang and F. Glorius,
Org. Lett., 2012, 14, 656; for a very recent example of Rh-catalyzed
intermolecular C–H amidation, see: (c) J. Y. Kim, S. H. Park, J. Ryu,
S. H. Cho, S. H. Kim and S. Chang, J. Am. Chem. Soc., 2012, 134, 9110.
12 For reviews on N-chloroamines, see: (a) E. Erdik and M. Ay, Chem.
Rev., 1989, 89, 1947; (b) L. Stella, Angew. Chem., Int. Ed., 1983,
22, 337; (c) P. Kovacic, M. K. Lowery and K. W. Field, Chem. Rev.,
1970, 70, 639.
We are grateful for the financial support from the Hong
Kong Research Grants Council (PolyU5017-07P; SEG_PolyU01).
Notes and references
1 Recent reviews on transition metal catalyzed arene C–H activation:
¨
(a) J. Wencel-Delord, T. Droge, F. Liu and F. Glorius, Chem. Soc. Rev.,
2011, 40, 4740; (b) C. S. Yeung and V. M. Dong, Chem. Rev., 2011,
111, 1215; (c) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010,
110, 1147.
2 Recent reviews on catalytic C–H amidation–amination: (a) B. J.
Stokes and T. G. Driver, Eur. J. Org. Chem., 2011, 4071; (b) F. Collet,
R. H. Dodd and P. Dauban, Chem. Commun., 2009, 5061.
3 (a) J. Zhou, J. He, B. Wang, W. Yang and H. Ren, J. Am. Chem. Soc.,
2011, 133, 6868; (b) Y. Tan and J. F. Hartwig, J. Am. Chem. Soc., 2010,
13 For reviews, see: (a) A. Kamal, K. L. Reddy, V. Devaiah, N. Shankaraiah
and M. V. Rao, Mini-Rev. Med. Chem., 2006, 6, 71; (b) D. A. Horton,
G. T. Bourne and M. L. Smythe, Chem. Rev., 2003, 103, 893.
132, 3676; (c) T.-S. Mei, X. Wang and J.-Q. Yu, J. Am. Chem. Soc., 2009, 14 (a) C. Li, L. Wang, P. Li and W. Zhou, Chem.–Eur. J., 2011, 17, 10208;
131, 10806; (d) J. A. Jordan-Hore, C. C. C. Johansson, M. Gulias, (b) Y. Wu, B. Li, F. Mao, X. Li and F. Y. Kwong, Org. Lett., 2011, 13, 3258.
E. M. Beck and M. J. Gaunt, J. Am. Chem. Soc., 2008, 130, 16184; 15 See ESI† for details.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 7031--7033 7033