10.1002/ejoc.201700999
European Journal of Organic Chemistry
FULL PAPER
[2]
[3]
W. Lin, J. Huang, X. Liao, Z. Yuan, S. Feng, Y. Xie, W. Ma, Pharmacol.
Res. 2016, 111, 849–858.
E. M. Shin, H. Y. Zhou, L. Y. Guo, J. A. Kim, S. H. Lee, I. Merfort, S. S.
Kang, H. S. Kim, S. Kim, Y. S. Kim, Int. Immunopharmacol. 2008, 8,
1524–1532.
[4]
a) E. M. Bickoff, A. N. Booth, R. L. Lyman, A. L. Livingston, C. R.
Thompson, F. Deeds, Science 1957, 126, 969–970; (b) G. A. Kraus, N.
Zhang, J. Org. Chem. 2000, 65, 5644–5646; (c) T. Yao, D. Yue, R. C.
Larock, J. Org. Chem. 2005, 70, 9985–9989.
[5]
[6]
[7]
[8]
A. L. Livingston, S. C. Witt, R. E. Lundin, E. M. Bickoff, J. Org. Chem.
1965, 30, 2353–2355.
B. A. Chauder, A. V. Kalinin, N. J. Taylor, V. Snieckus, Angew. Chem.
Int. Ed. 1999, 38, 1435–1438.
C. C. Li, Z. X. Xie, Y. D. Zhang, J. H. Chen, Z. Yang, J. Org. Chem. 2003,
68, 8500–8504.
a) G. Cheng, Y. Hu, Chem. Commun. 2007, 3285–3287; b) C.-J. Lee,
C.-C. Tsai, S.-H. Hong, G.-H. Chang, M.-C. Yang, L. Möhlmann, W. Lin,
Angew. Chem. Int. Ed. 2015, 54, 8502–8505; c) C.-J. Lee, Y.-J. Jang,
Z.-Z. Wu, W. Lin, Org. Lett. 2012, 14, 1906–1909; d) H. Zhou, X. Deng,
Z. Ma, A. Zhang, Q. Qin, R. X. Tan, S. Yu, Org. Biomol. Chem. 2016, 14,
6065–6070; e) W.-Y. Huang, Y.-C. Chen, K. Chen, Chem. –Asian J.
2012, 7, 688–691; f) Z. Zhou, H. Liu, Y. Li, J. Liu, Y. Li, J. Liu, J. Yao, C.
Wang, ACS Comb. Sci. 2013, 15, 363–369; g) M. Kumar, S. Bagchi, A.
Sharma, RSC Adv. 2015, 5, 53592–53603; h) X. Zhu, X.-P. Xu, C. Sun,
T. Chen, Z.-L. Shen, S.-J. Ji, Tetrahedron 2011, 67, 6375–6381; i) S. K.
Bankar, J. Mathew, S. S. V. Ramasastry, Chem. Commun. 2016, 52,
5569–5572; j) M. Ghosh, A. Hajra, Eur. J. Org. Chem. 2015, 7836–
7841; k) D. Conreaux, S. Belot, P. Desbordes, N. Monteiro, G. Balme, J.
Org. Chem. 2008, 73, 8619–8622; l) G. Raffa, M. Rusch, G. Balme, N.
Monteiro, Org. Lett. 2009, 11, 5254–5257; m) L. Chen, Y. Li, M.-H. Xu,
Org. Biomol. Chem. 2010, 8, 3073–3077; n) X.-C. Tan, H.-Y. Zhao, Y.-
M. Pan, N. Wu, H.-S. Wang, Z.-F. Chen, RSC Adv. 2015, 5, 4972–4975;
o) D. Hack, P. Chauhan, K. Deckers, G. N. Hermann, L. Mertens, G.
Raabe, D. Enders, Org. Lett. 2014, 16, 5188–5191; p)
Scheme 3. A plausible reaction pathway.
Experimental Section
General Procedure for the Synthesis of Furo[3,2-c]coumarins: To a
solution of 4-hydroxy-2H-chromen-2-one 1a (48.6 mg, 0.30 mmol, 1.5
equiv) and 1-phenylprop-2-yn-1-ol 2a (26.4 mg, 0.20 mmol, 1.0 equiv) in
2.0 mL nitromethane, iron(III) perchlorate hydrate (7.4 mg, 0.02 mmol, 0.1
equiv) as a catalyst was added. The reaction mixture was stirred at 80 oC
for 5 h. The crude product was purified by column chromatography on
silica gel, eluted by hexane/EtOAc=15:1 then 10:1 to afford 47.6 mg (86 %
yield) of the desired product 3aa as white solid.
[9]
a) V. Cadierno, J. Díez, J. Gimeno, N. Nebra, J. Org. Chem. 2008, 73,
5852–5858; b) S. Yaragorla, R. Dada, A. Pareek, G. Singh, RSC Adv.
2016, 6, 28865–28870; c) V. Cadierno, J. Gimeno, N. Nebra, Adv. Synth.
Catal. 2007, 349, 382–394; d) N. Nebra, A. E. Díaz-Álvarez, J. Díez, V.
Cadierno, Molecules 2011, 16, 6470–6480; e) X.-Y. Zhang, L.-L. Hu, Z.
Shen, Z.-Z. Chen, Z.-G. Xu, S.-Q. Li, J.-W. Xie, H.-L. Cui, Synlett 2015,
26, 2821–2825; f) W. Huang, J. Wang, Q. Shen, X. Zhou, Tetrahedron
2007, 63, 11636–11643; g) S. Ponra, M. Gohain, J. H. van Tonder, B.
C. B. Bezuidenhoudt, Synlett 2015, 745–750.
General Procedure for the Synthesis of Pyrano[3,2-c]coumarins: To
a solution of 4-hydroxy-2H-chromen-2-one 1a (48.6 mg, 0.30 mmol, 1.5
equiv) and 1,3-diphenylprop-2-yn-1-ol 6a (41.7 mg, 0.20 mmol, 1.0 equiv)
in 2.0 mL nitromethane, iron(III) perchlorate hydrate (7.4 mg, 0.02 mmol,
0.1 equiv) as a catalyst was added. The reaction mixture was stirred at 80
oC for 10 h. The crude product was purified by column chromatography on
silica gel, eluted by hexane/EtOAc=20:1 then 8:1 to afford 53.1 mg (75 %
yield) of the desired product 7aa as white solid.
[10] a) R. Shang, L. Ilies, E. Nakamura, Chem. Rev. 2017, 117, 9086–9139;
b) G. Cera, L. Ackermann, Top. Curr. Chem. 2016, 374, 57; c) I. Bauer,
H.-J. Knolker, Chem. Rev. 2015, 115, 3170–3387; d) K. Gopalaiah,
Chem. Rev. 2013, 113, 3248–3296; e) C.-L. Sun, B.-J. Li, Z.-J. Shi,
Chem. Rev. 2011, 111, 1293–1314; f) S. Enthaler, K. Junge, M. Beller,
Angew. Chem. Int. Ed. 2008, 47, 3317–3321; g) C. Bolm, J. Legros, J.
Le Paih, L. Zani, Chem. Rev. 2004, 104, 6217–6254; h) M. Nakamura,
K. Matsuo, S. Ito, E. Nakamura, J. Am. Chem. Soc. 2004, 126, 3686–
3687.
Acknowledgements
We are grateful for financial support from the National Natural
Science Foundation of China (21602179, and 81602977) and the
Opening fund of Hubei Key Laboratory of Bioinorganic Chemistry
& Materia Medica (BCMM201702).
[11] K. Lee, J. Kim, KNU-Industry Cooperation Foundation, KR 1505097,
2015.
Keywords: iron catalysis • regioselectivity • domino reaction •
furo[3,2-c]coumarin synthesis • pyrano[3,2-c]coumarin sythesis
[12] CCDC 1542097 (3aa), CCDC 1542040 (7ab).
[13] a) S. Maiti, S. Biswas, U. Jana, Synth. Commun. 2011, 41, 243–254; b)
P. Thirupathi, S. S. Kim, Tetrahedron 2010, 66, 2995–3003; c) J. Kischel,
K. Mertins, D. Michalik, A. Zapf, M. Beller, Adv. Synth. Catal. 2007, 349,
865–870.
References:
[1]
a) Y. Dong, Q. Shi, H.-C. Pai, C.-Y. Peng, S.-L. Pan, C.-M. Teng, K.
Nakagawa-Goto, D. Yu, Y.-N. Liu, P.-C. Wu, K. F. Bastow, S. L. Morris-
Natschke, A. Brossi, J.-Y. Lang, J. L. Hsu, M.-C. Hung, E. Y.-H. P. Lee,
K.-H. Lee, J. Med. Chem. 2010, 53, 2299– 2308; b) X. Wang, K.
Nakagawa-Goto, K. F. Bastow, M.-J. Don, Y.-L. Lin, T.-S. Wu and K.-H.
Lee, J. Med. Chem. 2006, 49, 5631–5634; c) X. Wang, K. F. Bastow,
C.-M. Sun, Y.-L. Lin, H.-J. Yu, M.-J. Don, T.-S. Wu, S. Nakamura and K.-
H. Lee, J. Med. Chem. 2004, 47, 5816–5819; d) L. Piccagli, M. Borgatti,
E. Nicolis, N. Bianchi, I. Mancini, I. Lampronti, D. Vevaldi, F. Dall’Acqua,
G. Cabrini and R. Gambari, Bioorg. Med. Chem. 2010, 18, 8341–8349.
4
This article is protected by copyright. All rights reserved.