Organic Letters
Letter
Scheme 2. Catalytic Enantioselective Synthesis of 2,3-
Disubstituted Tetrahydroquinolines
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
1
Experimental details, copies of H and 13C spectra of
new compounds, and HPLC chromatograms (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
Scheme 3. Gram-Scale Preparation
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for the financial support from the National
Natural Science Foundation of China (Grant 21702055) and
the Youth Foundation of Hunan University (Grant
531107050885).
To understand the reaction mechanism, we carried out two
simple control experiments (Scheme 4). Under otherwise
Scheme 4. Control Experiments
REFERENCES
■
(1) Reviews of photocatalysis: (a) Xuan, J.; Xiao, W.-J. Angew.
Chem., Int. Ed. 2012, 51, 6828. (b) Shi, L.; Xia, W. J. Chem. Soc. Rev.
2012, 41, 7687. (c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C.
Chem. Rev. 2013, 113, 5322. (d) Nicewicz, D. A.; Nguyen, T. M. ACS
Catal. 2014, 4, 355. (e) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem.
Rev. 2016, 116, 10035.
(2) Reviews of asymmetric photocatalysis: (a) Wang, C. F.; Lu, Z.
Org. Chem. Front. 2015, 2, 179. (b) Brimioulle, R.; Lenhart, D.;
Maturi, M. M.; Bach, T. Angew. Chem., Int. Ed. 2015, 54, 3872.
(c) Meggers, E. Chem. Commun. 2015, 51, 3290.
(3) Selected examples: (a) Nicewicz, D. A.; MacMillan, D. W. C.
Science 2008, 322, 77. (b) Shih, H.-W.; Vander Wal, M. N.; Grange,
R. L.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 13600.
(c) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc.
identical conditions, no reaction was observed without blue
light. When 2-aminochalcone 1a was subjected to a two-step
one-pot procedure, almost the same result was obtained. In the
first step, 1a was efficiently converted into 2-phenylquinoline
(1a′) with blue LEDs via visible-light-induced E/Z isomer-
ization of chalcone. In the second step, 1a′ was transformed
into the corresponding tetrahydroquinoline 2a in the presence
of catalyst F and Hantzsch ester. The above results indicated
that the reaction proceeded via a relay catalytic process
consisting of a visible-light-mediated intramolecular cyclization
and a Brønsted acid-catalyzed asymmetric transfer hydro-
genation. On basis of the configuration of 2a and the observed
results, a generally accepted reaction mechanism and a key
transition state model were proposed (see the Supporting
In summary, we have disclosed an efficient method for the
direct transformation of 2-aminoenones into 2-substituted
tetrahydroquinolines through a relay visible-light-mediated
cyclization/Brønsted acid-catalyzed asymmetric transfer hydro-
genation reaction. This protocol features metal-free catalysis,
mild reaction conditions, and excellent efficiency and stereo-
control. It is a new and rare example of merging asymmetric
Brønsted acid catalysis with visible-light chemistry. Further
study of visible-light-mediated asymmetric organocatalysis is
underway in our laboratory.
2009, 131, 10875. (d) Neumann, M.; Fuldner, S.; Konig, B.; Zeitler,
̈
̈
K. Angew. Chem., Int. Ed. 2011, 50, 951. (e) Pirnot, M. T.; Rankic, D.
A.; Martin, D. B. C.; MacMillan, D. W. C. Science 2013, 339, 1593.
(f) Zhu, Y.; Zhang, L.; Luo, S. J. Am. Chem. Soc. 2014, 136, 14642.
(g) Lin, L.; Bai, X.; Ye, X.; Zhao, X.; Tan, C.-H.; Jiang, Z. Angew.
Chem., Int. Ed. 2017, 56, 13842.
̈
(4) (a) Bauer, A.; Westkamper, F.; Grimme, S.; Bach, T. Nature
2005, 436, 1139. (b) DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc.
2012, 134, 8094. (c) Bergonzini, G.; Schindler, C. S.; Wallentin, C.-J.;
Jacobsen, E. N.; Stephenson, C. R. J. Chem. Sci. 2014, 5, 112.
(d) Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.;
Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735. (e) Proctor, R. S.
J.; Davis, H. J.; Phipps, R. J. Science 2018, 360, 419. (f) Bu, L.; Li, J.;
Yin, Y.; Qiao, B.; Chai, G.; Zhao, X.; Jiang, Z. Chem. - Asian J. 2018,
13, 2382. (g) Yin, Y.; Dai, Y.; Jia, H.; Li, J.; Bu, L.; Qiao, B.; Zhao, X.;
Jiang, Z. J. Am. Chem. Soc. 2018, 140, 6083. (h) Liu, X.; Liu, Y.; Chai,
G.; Qiao, B.; Zhao, X.; Jiang, Z. Org. Lett. 2018, 20, 6298. (i) Liu, Y.;
Liu, X.; Li, J.; Zhao, X.; Qiao, B.; Jiang, Z. Chem. Sci. 2018, 9, 8094.
(j) Li, J.; Kong, M.; Qiao, B.; Lee, R.; Zhao, X.; Jiang, Z. Nat.
Commun. 2018, 9, 2445. (k) Cao, K.; Tan, S. M.; Lee, R.; Yang, S.; Jia,
H.; Zhao, X.; Qiao, B.; Jiang, Z. J. Am. Chem. Soc. 2019, 141, 5437.
(5) (a) Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996,
́
52, 15031. (b) Sridharan, V.; Suryavanshi, P. A.; Menendez, J. C.
Chem. Rev. 2011, 111, 7157. (c) Rano, T. A.; Kuo, G.-H. Org. Lett.
2009, 11, 2812.
C
Org. Lett. XXXX, XXX, XXX−XXX