Organic Letters
Experimental details and characterization data for all new
Letter
(13) (a) Microwaves in Organic and Medicinal Chemistry; Kappe, C.
O., Stadler, A., Eds.; Wiley−VCH: Weinheim, 2005. (b) Microwaves in
Organic Synthesis; Loupy, A., Ed.; Wiley−VCH: Weinheim, 2002.
(14) Chiral pool based synthesis of 9-epi-Ambrox (see, for example,
refs 7, 8c and 8d) only allow the access to the (−)-enantiomer.
(15) Asymmetric Organic Synthesis with Enzymes; Gotor, V., Alfonso,
I., García-Urdiales, E., Eds.; Wiley−VCH: Weinheim, 2008.
(16) Cunha, R. L. O. R.; Ferreira, E. A.; Oliveira, C. S.; Omori, A. T.
Biotechnol. Adv. 2015, 33, 614−623.
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge financial support from MINECO-Spain
(Grant No. CTQ2013-41336-P) and MEC (FPU-predoctoral
grant to P.A.). Preliminary studies performed by Laura
́
Martinez (Master’s degree final project, University of Oviedo)
are also acknowledged. We are indebted to Dr Ivan Lavandera,
Dr. Vicente Gotor-Fernandez, and the rest of the Bioorganic
́
́
Chemistry Group of the University of Oviedo for their help and
advice with the enzymatic reactions.
REFERENCES
■
(1) Breitmaier, E. Terpenes: Flavors, Fragrances, Pharmaca, Pher-
omones; Wiley−VCH: Weinheim, 2006.
(2) (a) Yoder, R. A.; Johnston, J. N. Chem. Rev. 2005, 105, 4730−
4756. (b) Brunoldi, E.; Luparia, M.; Porta, A.; Zanoni, G.; Vidari, G.
Curr. Org. Chem. 2006, 10, 2259−2282.
(3) Alonso, P.; Pardo, P.; Galvan
Angew. Chem., Int. Ed. 2015, 54, 15506−15510.
́ ́
, A.; Fananas, F. J.; Rodríguez, F.
̃
(4) Ohloff, G. In Fragance Chemistry: The Science of the Sense of Smell;
Theimer, E. T., Ed.; Academic Press: New York, 1982; p 535.
(5) Ambrox [(−)-4] and Cetalox [( )-4] are trade names
(Firmenich). For the first preparation of Ambrox, see: Stoll, M.;
Hinder, M. Helv. Chim. Acta 1950, 33, 1251−1260.
(6) For some recent representative syntheses of Ambrox, see:
(a) Moulines, J.; Bats, J.-P.; Lamidey, A.-M.; Da Silva, N. Helv. Chim.
Acta 2004, 87, 2695−2705. (b) Xie, Y.-P.; Li, B.-G.; Luo, Y.-G.; Chen,
X.-Z.; Zhang, G.-L. Helv. Chim. Acta 2008, 91, 734−740. (c) Chapuis,
C. Helv. Chim. Acta 2014, 97, 197−214. (d) Rosales, A.; Foley, L. A.
́ ́
R.; Padial, N. M.; Munoz-Bascon, J.; Sancho-Sanz, I.; Roldan-Molina,
̃
́
E.; Pozo-Morales, L.; Irías-Alvarez, A.; Rodríguez-Maecker, R.;
Rodríguez-García, I.; Oltra, J. E. Synlett 2016, 27, 369−374. See
also: (e) Snowden, R. L. Chem. Biodiversity 2008, 5, 958−969 and
references cited therein.
(7) Ohloff, G.; Giersch, W.; Pickenhagen, W.; Furrer, A.; Frei, B.
Helv. Chim. Acta 1985, 68, 2022−2029.
(8) (a) Paquette, L. A.; Maleczka, R. E. J. J. Org. Chem. 1991, 56,
912−913. (b) Snowden, R. L.; Eichenberger, J.-C.; Linder, S. M.;
Sonnay, P.; Vial, C.; Schulte-Elte, K. H. J. J. Org. Chem. 1992, 57, 955−
960. (c) Kutney, J. P.; Cirera, C. Can. J. Chem. 1997, 75, 1136−1150.
(d) Yang, H.-J.; Li, B.-G.; Cai, X.-H.; Qi, H.-Y.; Luo, Y.-G.; Zhang, G.-
L. J. J. Nat. Prod. 2006, 69, 1531−1538.
(9) Related approaches have been used by other authors to obtain
the desired configuration at C9. For a strategy involving a [2,3]-Wittig
rearrangement, see, for example: (a) Oguchi, T.; Watanabe, K.;
Ohkubo, K.; Abe, H.; Katoh, T. Chem. - Eur. J. 2009, 15, 2826−2845.
For a strategy involving an Eschenmoser−Claisen rearrangement, see:
(b) Zhang, F.; Danishefsky, D. Angew. Chem., Int. Ed. 2002, 41, 1434−
1437.
(10) Johnson, W. S.; Gravestock, M. B.; Parry, R. J.; Okorie, D. A. J. J.
Am. Chem. Soc. 1972, 94, 8604−8605.
(11) Compound 1 was synthesized by transforming geraniol into the
corresponding geranyl bromide: Paz, J. L.; Rodrigues, J. A. R. J. J. Braz.
Chem. Soc. 2003, 14, 975−981. Formal coupling of the propargylic
subunit followed: Domingo, V.; Lorenzo, L.; Quilez del Moral, J. F.;
Barrero, A. F. Org. Biomol. Chem. 2013, 11, 559−562.
(12) Bosch, M.; Schlaf, M. J. J. Org. Chem. 2003, 68, 5225−5227.
D
Org. Lett. XXXX, XXX, XXX−XXX