Paper
Organic & Biomolecular Chemistry
HRMS calcd for C34H37N5O6Na [M + Na]+ 634.262, found
[M + Na]+ 634.262.
2006, 34, 4354–4363; (i) L. Lacroix and J.-L. Mergny, Arch.
Biochem. Biophys., 2000, 381, 153–163; ( j) K. Kanaori,
S. Sakamoto, H. Yoshida, P. Guga, W. Stec, K. Tajima and
K. Makino, Biochemistry, 2004, 43, 5672–5679;
(k) J. A. Brazier, J. Fisher and R. Cosstick, Angew. Chem., Int.
Ed., 2006, 45, 114–117.
Guanine phosphoramidite (30)
Compound 29 (617 mg, 1 mmol) was dried under high
vacuum and anhydrous dichloromethane was added and
subsequently diisopropyl ammonium tetrazolide (85 mg,
0.5 mmol) and 2-cyanoethyl N,N,N′,N′-tetraisopropylphosphor-
diamidite (452 mg, 1.5 mmol) were added under nitrogen. The
reaction was allowed to stir at room temperature. After 4 h, the
reaction was diluted with dichloromethane and poured into
saturated aqueous sodium bicarbonate. The product was
extracted with dichloromethane and dried over magnesium
sulfate. The product was purified by silica gel chromatography
dichloromethane–hexanes (2 to 80%) with 1% triethyl-
amine to afford the product as a white foam (532 mg, yield
65%). 31P NMR (121 MHz, CDCl3) δ 148.824, 147.865; HRMS
calcd for C43H54N7O6PNa [M + Na]+ 834.3720, found [M + Na]+
834.3724.
3 (a) B. De Bouvere, L. Kerreinans, C. Hendrix, H. De Winter,
G. Schepers, A. Van Aerschot and P. Herdewijn, Nucleosides
Nucleotides, 1997, 16, 973–976; (b) A. Eschenmoser, Science,
1999, 284, 2118–2124; (c) J. Wang, B. Verbeure, I. Luyten,
E. Lescrinier, M. Froeyen, C. Hendrix, H. Rosemeyer,
F. Seela, A. Van Aerschot and P. Herdewijn, J. Am. Chem.
Soc., 2000, 122, 8595–8602; (d) V. B. Pinheiro and
P. Holliger, Curr. Opin. Chem. Biol., 2012, 16, 245–252.
4 (a) K. C. Schneider and S. A. Benner, J. Am. Chem. Soc.,
1990, 112, 453–455; (b) F. Vandendriessche, K. Augustyns,
A. Van Aerschot, R. Busson, J. Hoogmartens and
P. Herdewijn, Tetrahedron, 1993, 49, 7223–7238;
(c) Y. Merle, E. Bonneil, L. Merle, J. Sági and A. Szemzö,
Int. J. Biol. Macromol., 1995, 17, 239–246; (d) K. S.
Ramasamy and W. Seifert, Bioorg. Med. Chem. Lett., 1996, 6,
1799–1804; (e) L. Peng and H.-J. Roth, Helv. Chim. Acta,
1997, 80, 1494–1512; (f) L. Zhang, A. Peritz and E. Meggers,
J. Am. Chem. Soc., 2005, 127, 4174–4175; (g) J. J. Chen,
X. Cai and J. W. Szostak, J. Am. Chem. Soc., 2009, 131,
2119–2121; (h) H. Asanuma, T. Toda, K. Murayama,
X. Liang and H. Kashida, J. Am. Chem. Soc., 2010, 132,
14702–14703; (i) H. Kashida, K. Murayama, T. Toda and
H. Asanuma, Angew. Chem., Int. Ed., 2011, 50, 1285–1288;
( j) P. Karri, V. Punna, K. Kim and R. Krishnamurthy,
Angew. Chem., Int. Ed., 2013, 52, 5840–5844.
5 (a) A. Holý and G. S. Ivanova, Nucleic Acids Res., 1974, 1,
19–34; (b) K. Augustyns, A. Van Aerschot, A. Van Schepdael,
C. Urbanke and P. Herdewijn, Nucleic Acids Res., 1991, 19,
2587–2593; (c) P. Nielsen, L. H. Dreiøe and J. Wengel,
Bioorg. Med. Chem., 1995, 3, 19–28; (d) P. Nielsen,
F. Kirpekar and J. Wengel, Nucleic Acids Res., 1994, 22, 703–
710; (e) D. Zhou, I. M. Lagoja, J. Rozenski, R. Busson,
A. Van Aerschot and P. Herdewijn, ChemBioChem, 2005, 6,
2298–2304; (f) V. S. Rana, V. A. Kumar and K. N. Ganesh,
Bioorg. Med. Chem. Lett., 1997, 7, 2837–2842;
(g) R. Benhida, M. Devys, J.-L. Fourrey, F. Lecubin and
J. S. Sun, Tetrahedron Lett., 1998, 39, 6167–6170;
(h) A. K. Sharma, P. Kumar and K. C. Gupta, Helv. Chim.
Acta, 2001, 84, 3643–3649; (i) V. S. Rana, V. A. Kumar and
K. N. Ganesh, Tetrahedron, 2001, 57, 1311–1321;
( j) M. K. Schlegel, A. E. Peritz, K. Kittigowittana, L. Zhang
and E. Meggers, ChemBioChem, 2007, 8, 927–932;
(k) D. M. Kenski, A. J. Cooper, J. J. Li, A. T. Willingham,
H. J. Haringsma, T. A. Young, N. A. Kuklin, J. J. Jones,
M. T. Cancilla, D. R. McMasters, M. Mathur, A. B. Sachs
and W. M. Flanagan, Nucleic Acids Res., 2010, 38, 660–
671.
Acknowledgements
The authors acknowledge financial support from the DBT and
ICMR, Govt. of India (BT/PR/10064/AGR/36/30/07). The
authors gratefully thank Dr Yamuna Krishnan from National
Center for Biological Sciences (NCBS) India for their kind
support for UV-melting studies and Department of Chemistry
IIT Madras, SAIF-IIT Madras for analytical data. Vipin thanks
IIT Madras for fellowship. Vipin thanks Dr Thomas Torring
from Center for DNA Nanotechnology (CDNA), Department of
Chemistry and iNANO, Aarhus University for proof reading the
article.
Notes and references
1 (a) A. Ray and B. Norden, FASEB J., 2000, 14, 1041–1060;
(b) D. A. Braasch and D. R. Corey, Chem. Biol., 2001, 8, 1–7;
(c) J. Heasman, Dev. Biol., 2002, 243, 209–214; (d) N. Dias
and C. A. Stein, Mol. Cancer Ther., 2002, 1, 347–355;
(e) S. Shukla, C. S. Sumaria and P. I. Pradeepkumar, Chem-
MedChem, 2010, 5, 328–349.
2 (a) A. Pasternak and J. Wengel, Bioorg. Med. Chem. Lett.,
2011, 21, 752–755; (b) T. B. Jensen, J. R. Henriksen,
B. E. Rasmussen, L. M. Rasmussen, T. L. Andresen,
J. Wengel and A. Pasternak, Bioorg. Med. Chem., 2011, 19,
4739–4745; (c) N. Kumar, J. T. Nielsen, S. Maiti and
M. Petersen, Angew. Chem., Int. Ed., 2007, 46, 9220–9222;
(d) B. Datta, C. Schmitt and B. A. Armitage, J. Am. Chem.
Soc., 2003, 125, 4111–4118; (e) B. Datta, M. E. Bier, S. Roy
and B. A. Armitage, J. Am. Chem. Soc., 2005, 127, 4199–
4207; (f) A. Paul, P. Sengupta, Y. Krishnan and S. Ladame,
Chem.–Eur. J., 2008, 14, 8682–8689; (g) N. K. Sharma and
K. N. Ganesh, Chem. Commun., 2005, 4330–4332;
(h) S. Modi, A. H. Wani and Y. Krishnan, Nucleic Acids Res.,
6 (a) M. Manoharan, K. G. Rajeev, J. Lackey and
K. N. Jayaprakash, WO/2011/133876; (b) D. M. Kenski,
A. J. Cooper, J. J. Li, A. T. Willingham, H. J. Haringsma,
5864 | Org. Biomol. Chem., 2013, 11, 5853–5865
This journal is © The Royal Society of Chemistry 2013