Page 3 of 3
ChemComm
DOI: 10.1039/C3CC44231D
were measured. For all three cases, the excitation wavelength was
290 nm and the emission was acquired at 467 nm. The crystals
were gently crushed in a mortar pestle and put into the groove of
the solid sample probe for lifetime measurements. The data
obtained were well fitted with the single exponential decay
model. The results show that in chloroform solution the lifetime
of the compound is in nanosecond regime (4 ns) (ESI Fig. 7)
responsible for fluorescence. Whereas the lifetime of the
compound in crystals obtained from ethyl acetate solution is in
India. S. K. Maity and A. Pramanik thank C.S.I.R, India and
60 S. Bera and A. Paiker thank UGC, India for fellowship.
Notes and references
5
‡ Crystallographic data: Foldamer 2 from EtOAc: C25H36BrN3O4, Mw
=
522.47, monoclinic, space group P21/c, a = 13.649(13), b = 16.921(16), c
= 12.008(12) Å, α = 90°, β = 108.526(15)°, γ = 90°V = 2629(4) Å3, Z = 4,
65 dc = 1.320 Mgmꢀ3, T = 100 K, R1 = 0.0526 and wR2 = 0.1191 for 4442
data with I >
2σ(I). From MeOH: C25H36BrN3O4, Mw = 522.48,
monoclinic, space group P21/c, a = 13.479(19), b = 16.843(2), c =
11.834(17) Å, α = 90°, β = 107.838(2)°, γ = 90° V = 2557.5(6) Å3, Z =4,
dc = 1.357 Mgmꢀ3, T = 100 K, R1 = 0.0364 and wR2 = 0.0914 for 4450
10 microsecond regime (11 ꢀs) which corresponds to
phosphorescence (Fig. 3a). Fig. 3a inset shows the green
phosphorescence as evident from the photographs under 254 nm
UV light. The crystal obtained from methanol solution exhibits
increased phosphorescence lifetime (13 ꢀs) compared to the
15 crystals from ethyl acetate (Fig. 3b). Fig. 3b inset shows the
strong green phosphorescence under 254 nm UV.
70 data with I > 2σ(I). Intensity data were collected with MoKα radiation for
foldamer 2 at 100 K using Bruker APEXꢀ2 CCD diffractometer. Data
were processed using the Bruker SAINT package and the structure
solution and refinement procedures were performed using SHELX97.14
For foldamer 2 nonꢀhydrogen atoms were refined with anisotropic
75 thermal parameters. The data for foldamer 2 from EtOAc and MeOH
have been deposited at the CCDC with reference number CCDC 942338ꢀ
942337 respectively.
1.
2.
3.
M. A. Baldo, M. E. Thompson and S. R. Forrest, Pure Appl.
Chem., 1999, 71, 2095.
80
85
90
95
20
25
30
35
40
N. J. Turro, Modern Molecular Photochemistry (University
Science Books), 1991, 99.
(a) M. A. Baldo, M. E. Thompson and S. R. Forrest, Nature,
2000, 403, 750; (b) S. Lamansky, P. Djurovich, D. Murphy, F.
AbdelꢀRazzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau
and M. E. Thompson, Inorg. Chem., 2001, 40, 1704; (c) A.
Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J.
Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S.
Okada, M. Hoshino and K. Ueno, J. Am. Chem. Soc., 2003,
125, 12971.
4.
5.
6.
(a) M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S.
Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395,
151; (b) Y. Shao and Y. Yang, Adv. Mater., 2005, 17, 2841.
A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M.
Huxley, C. P. McCoy and J. T. Rademacher, T. E. Rice, Chem.
Rev., 1997, 97,1515.
(a) W. L. Rumsey, J. M. Vanderkooi andbD. F. Wilson,
Science, 1988, 241, 1649; (b) G. Zhang, G. M. Palmer, M. W.
Dewhirts and C. L. Fraser, Nature Mater., 2009, 8, 747.
(a) D. Rendell and D. Mowthorpe, Eds.; Fluorescence and
Phosphorescence; Wiley: New York, 1987; (b) B. Valeur,
Molecular Fluorescence:Principles and Applications; Wileyꢀ
VCH: New York, 2001; (c) M. Wahadoszamen, T. Hamada, T.
Iimori, T. Nakabayashi, N. Ohta, J. Phys. Chem. A, 2007, 111,
9544.
100 7.
105
45
Fig. 3 The time resolved decay curves of the crystals obtained from (a)
ethyl acetate and (b) methanol solution. Insets, the photographs of the
respective crystals under laboratory light and 254 nm UV light.
8.
W. Z. Yuan, X. Y. Shen, H. Zhao, J. W. Y. Lam, L. Tang, P.
Lu, C. Wang, Y. Liu, Z. Wang, Q. Zheng, J. Z. Sun, Y. Ma and
B. Z. Tang, J. Phys. Chem. C, 2010, 114, 6090.
9.
O. Bolton, K. Lee, H.ꢀJ. Kim, K. Y. Lin and J. Kim, Nature
chemistry, 2011, 3, 205.
50 In summary, we have shown the phosphorescence from purely
organic compounds in solid state at normal condition. The
increase in phosphorescence lifetime and intensity
significantly depends on the extent of halogen bonding
interaction where distance between the carbonyl oxygen and
55 the bromine atom plays an important role to the triplet state
population and emission. The results provide atomic level
insights over the halogen bonding and phosphorescence.
110
10. R. Kabe, V. M. Lynch and P. Anzenbacher, Jr., CrystEngComm,
2011, 13, 5423.
11. D. Lee, O. Bolton, B. C. Kim, J. H. Youk, S. Takayama and J.
Kim, J. Am. Chem. Soc., 2013, 135, 6325.
115 12. S. K. Maity, S. M., P. Jana and D. Haldar, Chem. Commun., 2012,
48, 711.
13. G. M. Sheldrick, SHELX 97. University of Göttingen, Germany,
1997. 2007, 19, 6290.
The work was supported by DST (SR/FT/CSꢀ041/2009),
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3