C O M M U N I C A T I O N S
Figure 2. The TEM image of 1 positively stained with uranyl acetate (a) shows the preferential staining of fiber peripheries, with line profile inset, and the
TEM image of 2 positively stained with uranyl acetate (b) shows staining at both cores and peripheries, with line profile and high magnification insets. The
molecular graphics rendition of the cross section of the nanofibers of 1 (c) illustrates hydrophilic domains A and C separated by the hydrophobic section B.
Supporting Information Available: CD spectra for 1-3 in solution
and as gelled. Solid-state FTIR amide I and II spectra for 1-3. TEM
images of negatively stained 1-3. An additional molecular graphics
image. Experimental procedures for compounds 1-10 (PDF). This
bonding patterns into the hydrophobic midsection. These patterns
lead to selective intermolecular hydrogen bonding of the R-amino
acid regions and the â-Ala-PABA regions, resulting in parallel
alignment of molecules along the length of the fiber. Even though
the wedge shape of the molecule may favor nanofiber formation,
we believe the driving force for self-assembly is â-sheet formation.
In Figure 2c, we schematically show the proposed arrangement of
amphiphiles viewed along the axis of the â-sheets. Additionally,
this representation illustrates the fact that the hydrophilic peptide
headgroup (L-glutamyl)3glycine is at the outer periphery and the
hydrophilic EO4 segment of 1 (or the aspartic acid of 2) is confined
to the core of the fiber.
These results show the self-assembly of unsymmetric peptide
bolaamphiphiles into cylindrical micelles that presumably bury one
headgroup in their core and present the other at the surface. We
believe this self-assembly is largely driven by the hydrogen-bonding
patterns that lead to sheet formation along the axis of the fiber.
Whereas we previously showed that the surface chemistry of the
nanofiber can be varied by using hydrophilic peptide epitope
sequences,5 here we demonstrate peptide-based bolaamphiphiles
self-assemble in water to form nanofibers with hydrophilic cores
as well as hydrophilic surfaces. These nanofibers could be used as
both bioactive structures as well as ion channels in biomedical
applications. Further research on their functionality is currently in
progress.
References
(1) (a) Bryson, J. W.; Betz, S. F.; Lu, H. S.; Suich, D. J.; Zhou, H. X.; O’Neil,
K. T.; DeGrado, W. F. Science 1995, 270, 935-41. (b) Dill, K. A.
Biochemistry 1990, 29, 7133-7155. (c) Brooks, C. L., III. Acc. Chem.
Res. 2002, 35, 447-454.
(2) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew. Chem.,
Int. Ed. 2001, 40, 988-1011.
(3) Vauthey, S.; Santoso, S.; Gong, H.; Watson, N.; Zhang, S. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 5355-5360.
(4) MacPhee, C. E.; Dobson, C. M. J. Am. Chem. Soc. 2000, 122, 12707-
12713.
(5) (a) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684-
1688. (b) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Proc. Natl. Acad.
Sci. U.S.A. 2002, 99, 5133-5138. (c) Niece, K. L.; Hartgerink, J. D.;
Donners, J. J. J. M.; Stupp, S. I. J. Am. Chem. Soc. 2003, 125, 7146-
7147.
(6) Yamada, N.; Ariga, K. Synlett 2000, 5, 575-586.
(7) (a) Gore, T.; Dori, Y.; Talmon, Y.; Tirrell, M.; Bianco-Peled, H. Langmuir
2001, 17, 5352-5360. (b) Fields, G. B. Bioorg. Med. Chem. 1999, 7,
75-81.
(8) Shimizu, T. Macromol. Rapid Commun. 2002, 23, 311-331.
(9) Li, G.; Fudickar, W.; Skupin, M.; Klyszcz, A.; Draeger, C.; Lauer, M.;
Fuhrhop, J.-H. Angew. Chem., Int. Ed. 2002, 41, 1828-1852.
(10) (a) Jonkheijm, P.; Fransen, M.; Schenning, A. P. H. J.; Meier, E. W. J.
Chem. Soc., Perkin Trans. 2 2001, 1280-1286. (b) Prehm, M.; Cheng,
X. H.; Diele, S.; Das, M. K.; Tschierske, C. J. Am. Chem. Soc. 2002,
124, 12072-12073. (c) Eaton, M. A. W.; Baker, T. S.; Catterall, C. F.;
Crook, K.; Macaulay, G. S.; Mason, B.; Norman, T. J.; Parker, D.; Perry,
J. J. B.; Taylor, R. J.; Turner, A.; Weir, A. N. Angew. Chem., Int. Ed.
2000, 39, 4063-4067. (d) Djalali, R.; Chen, Y.-f.; Matsui, H. J. Am. Chem.
Soc. 2002, 124, 13660-13661.
Acknowledgment. This manuscript is based upon work sup-
ported by the U.S. Department of Energy (DOE) under Award No.
DE-FG02-00ER45810. We thank the Electron Probe Instrumenta-
tion Center at Northwestern University for use of its Hitachi H-8100
transmission electron microscope, and the Keck Biophysics Facility
at Northwestern University for the use of its Jasco J-715 CD
spectrometer. We thank Mukti S. Rao of our laboratory for
assistance in collecting the CD data. Any opinions, findings, and
conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the
DOE.
(11) (a) Shimizu, T.; Iwaura, R.; Masuda, M.; Hanada, T.; Yase, K. J. Am.
Chem. Soc. 2001, 123, 5947-5955. (b) Masuda, M.; Shimizu, T. Chem.
Commun. 2001, 23, 2442-2443.
(12) (a) Sirieix, J.; Lauth-de Viguerie, N.; Riviere, M.; Lattes, A. New J. Chem.
2000, 24, 1043-1048. (b) Guilbot, J.; Benvegnu, T.; Legros, N.;
Plusquellec, D.; Dedieu, J.-C.; Gulik, A. Langmuir 2001, 17, 613-618.
(c) Fuhrhop, J.-H.; Spiroski, D.; Boettcher, C. J. Am. Chem. Soc. 1993,
115, 1600-1601.
(13) The exact pH at which these gels form is difficult to determine given the
gel nature of the materials.
(14) See Supporting Information.
JA035882R
9
J. AM. CHEM. SOC. VOL. 125, NO. 42, 2003 12681