Journal of the American Chemical Society
Communication
(6) (a) Mori, Y.; Sakaguchi, Y.; Hayashi, H. J. Phys. Chem. A 2000, 104,
4896. (b) Mangion, D.; Arnold, D. R. Acc. Chem. Res. 2002, 35, 297.
(7) For reviews on aldol reactions, see: (a) Evans, D. A.; Nelson, J. V.;
Taber, T. R. Topics in Stereochemistry; Wiley: New York, 1982.
(b) Nelson, S. G. Tetrahedron: Asymmetry 1998, 9, 357. (c) Denmark,
S. E.; Stavenger, R. A. Acc. Chem. Res. 2000, 33, 432.
(8) Wurtz, A. Bull. Soc. Chim. Fr. 1872, 17, 436.
(9) (a) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205.
(b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126,
14370. (c) Nair, V.; Vellalath, S.; Poonoth, M.; Mohan, R.; Suresh, E.
Org. Lett. 2006, 8, 507. (d) Zeitler, K. Angew. Chem., Int. Ed. 2005, 44,
7506. (e) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334.
(10) (a) Fu, Z.; Xu, J.; Zhu, T.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem.
2013, 5, 835. (b) Mo, J.; Shen, L.; Chi, Y. R. Angew. Chem., Int. Ed. 2013,
52, 8588.
Figure 2. Ir(p-MeO-ppy)3 emission quenching with acetophenone and
enamine 4.
this ketone class, demonstrating that an alternative mechanism is
operative using aryl−alkyl ketone substrates (Figure 2). Indeed,
pregenerated enamine 4 was found to quench *Ir(p-MeO-ppy)3,
providing evidence that oxidation of the enamine occurs prior to
reduction of acetophenone when aryl−alkyl ketones are
employed. This change in the sequence of the oxidation and
reduction steps in the photoredox cycle is consistent with the
observed requirement for a different photocatalyst depending on
the ketone acceptor employed (e.g., benzophenone = Ir(ppy)3
preferred, acetophenone = Ir(p-MeO-ppy)3 preferred).
(11) Buechi, G.; Wuest, H. J. Org. Chem. 1969, 34, 1122.
̈
(12) (a) Hoppe, D.; Hense, T. Angew. Chem., Int. Ed. Engl. 1997, 36,
2282. (b) Hoppe, D. Angew. Chem., Int. Ed. Engl. 1984, 23, 932.
(c) Weisenburger, G. A.; Beak, P. J. Am. Chem. Soc. 1996, 118, 12218.
(13) Nakamura, E.; Aoki, S.; Sekiya, K.; Oshino, H.; Kuwajima, I. J. Am.
Chem. Soc. 1987, 109, 8056.
(14) Kang, J. Y.; Connell, B. T. J. Am. Chem. Soc. 2010, 132, 7826.
(15) Hosomi, A.; Hashimoto, H.; Sakurai, H. J. Org. Chem. 1978, 43,
2551.
(16) (a) Nakamura, E.; Kuwajima, I. J. Am. Chem. Soc. 1977, 99, 7360.
(b) Burke, E. D.; Lim, N. K.; Gleason, J. L. Synlett 2003, 390.
(17) Kawanisi, M.; Kamogawa, K.; Okada, T.; Nozaki, H. Tetrahedron
1968, 24, 6557.
(18) (a) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
(b) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc.
2009, 131, 10875. (c) McNally, A.; Prier, C. K.; MacMillan, D. W. C.
Science 2011, 334, 1114. (d) Nagib, D. A.; MacMillan, D. W. C. Nature
2011, 480, 224.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and spectral data are provided. This
material is available free of charge via the Internet at http://pubs.
■
S
(19) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013,
113, 5322.
(20) Dedeian, K.; Djurovich, P. I.; Garces, F. O.; Carlson, G.; Watts, R.
J. Inorg. Chem. 1991, 30, 1685.
AUTHOR INFORMATION
Corresponding Author
■
(21) (a) Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti,
F. Top. Curr. Chem. 2007, 281, 143. (b) Dixon, I. M.; Collin, J.-P.;
Sauvage, J.-P.; Flamigni, L.; Encinas, S.; Barigelletti, F. Chem. Soc. Rev.
2000, 29, 385.
Author Contributions
†F.R.P. and M.N. contributed equally to this work.
Notes
The authors declare no competing financial interest.
(22) Wagner, P. J.; Truman, R. J.; Puchalski, A. E.; Wake, R. J. Am.
Chem. Soc. 1986, 108, 7727.
ACKNOWLEDGMENTS
Financial support was provided by the NIGMS (R01
GM103558-01) and kind gifts from Merck, Amgen, and AbbVie.
(23) (a) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Chem. Rev. 2010, 110,
6961. (b) Tarantino, K. T.; Liu, P.; Knowles, R. R. J. Am. Chem. Soc.
2013, 135, 10022.
■
(24) Schoeller, W. W.; Niemann, J. J. Chem. Soc., Perkin Trans. 2 1988,
369.
REFERENCES
■
(25) Bard, A. J. Encyclopedia of Electrochemistry of the Elements; Marcel
Dekker: New York, 1978.
(26) The use of DMPU is related to the requirement of high-dielectric
media for efficient ET processes (e.g., DMF, DMSO, etc. are also viable
although slightly less effective).
(27) It is well-known that azepane and pyrrolidine amines are
nucleophilic, due to the capacity to donate electrons from nitrogen to
alleviate ring strain (not found to the same level with piperidine). We
believe the use of an azepane catalyst leads to a more nucleophilic 5πe−
system as a result of this phenomenon.
(28) We have tried several additives such as LiCl, LiClO4, LiBF4,
KAsF6, etc.; however, slightly improved yields were obtained with
LiAsF6.
(1) (a) Pirnot, M. T.; Rankic, D. A.; Martin, D. B. C.; MacMillan, D. W.
C. Science 2013, 339, 1593. (b) Zhang, S.-L.; Xie, H.-X.; Zhu, J.; Li, H.;
Zhang, X.-S.; Li, J.; Wang, W. Nat. Commun. 2011, 2, 211. (c) Leskinen,
M. V.; Yip, K.-T.; Valkonen, A.; Pihko, P. M. J. Am. Chem. Soc. 2012, 134,
5750.
(2) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry: Part B:
Reactions and Synthesis; Springer: New York, 2001.
(3) (a) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev.
2007, 107, 5471. (b) Evans, D. A.; Helmchen, G.; Ruping, M.
̈
Asymmetric Synthesis−The Essentials; Wiley-VCH: Weinheim, 2006.
(4) For direct β-functionalizations of amides, esters, or oximes, see:
(a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005,
127, 13154. (b) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2009,
131, 9886. (c) Stowers, K. J.; Kubota, A.; Sanford, M. S. Chem. Sci. 2012,
(29) (a) Weinaug, U. J.; Ammermann, S.; Gargouri, H.; Hoping, M.;
Erk, P.; Kahle, K.; Lennartz, C.; Molt, O.; Munster, I.; Tamm, M.;
̈
́
3, 3192. (d) Renaudat, A.; Jean-Gerard, L.; Jazzar, R.; Kefalidis, C. E.;
Clot, E.; Baudoin, O. Angew. Chem., Int. Ed. 2010, 49, 7261.
Kowalsky, W.; Johannes, H.-H. Proc. SPIE 2008, 7051, 705108.
(b) Grushin, V. V.; Herron, N.; LeCloux, D. D.; Marshall, W. J.;
Petrov, V. A.; Wang, Y. Chem. Commun. 2001, 1494.
(30) This experiment reveals that proton coupled electron transfer
(PCET) is not operative in the reduction of acetophenone via the
excited state of Ir(p-MeO-ppy)3.
(5) (a) Yamamoto, H. Lewis Acids in Organic Synthesis; Wiley-VCH:
New York, 2000. (b) Crabtree, R. H. The Organometallic Chemistry of the
Transition Metals; Wiley-Interscience: Hoboken, NJ, 2005. (c) Lelais,
G.; MacMillan, D. W. C. Aldrichimica Acta 2006, 39, 79. (d) Taylor, M.
S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520.
D
dx.doi.org/10.1021/ja410478a | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX