ACS Catalysis
Page 6 of 8
Catalyzed Chemoselective Defunctionalization of Ether‐
Containing Primary Alkyl Tosylates with Hydrosilanes. Angew.
Chem., Int. Ed. 2017, 56, 3389-3391. (i) Ireland, R. E.; Muchmore,
We thank the National Natural Science Foundation of China
(No. 21602010 to Z. Yang), and the BUCT Fund for Discipline
Construction and Development (Project No. XK1533, to Z.
Yang) for financial support.
1
2
3
4
D.
C.;
Hengartner,
U.
N,
N,
N’,
N’-
Tetramethylphosphorodiamidate Group. A Useful Function for
the Protection or Reductive Deoxygenation of Alcohols and
Ketones. J. Am. Chem. Soc. 1972, 94, 5098-5100.
REFERENCES
5
6
7
8
(1) For selected reviews, see: (a) Herrmann, J. M.; Konig, B.
Reductive Deoxygenation of Alcohols: Catalytic Methods Beyond
Barton-McCombie Deoxygenation. Eur. J. Org. Chem. 2013, 7017-
7027. (b) Crich, D.; Quintero, L. Radical Chemistry Associated
with the Thiocarbonyl Group. Chem. Rev. 1989, 89, 1413-1432. (c)
Hartwig, W. Modern Methods for the Radical Deoxygenation of
Alcohols. Tetrahedron 1983, 39, 2609-2645. (d) Chenneberg, L.;
Goddard, J.-P.; Fensterbank, L. Reduction of Saturated Alcohols
and Amines to Alkanes. Comprehen. Org. Synth. 2014, 8, 1011-1030.
(e) Heravi, M. M.; Bakhtiari, A.; Faghihi, Z. Applications of Barton-
McCombie Reaction in Total Syntheses. Curr. Org. Synth. 2014, 11,
787 – 823.
(2) (a) Barton, D. H. R.; McCombie, S. W. A New Method for
the Deoxygenation of Secondary Alcohols. J. Chem. Soc., Perkin
Trans. 1 1975, 16, 1574-1585. (b) Barton, D. H. R.; Crich, D.;
Lobberding, A.; Zard, S. Z. On the Mechanism of the
Deoxygenation of Secondary Alcohols by the Reduction of their
Methyl Xanthates by Tin Hydrides. Tetrahedron 1986, 42, 2329-
2338. (c) Nozaki, K.; Oshima, K.; Utimoto, K. Facile Reduction of
Dithiocarbonates with n-Bu3SnH-Et3B. Easy Access to
Hydrocarbons from Secondary Alcohols. Tetrahedron Lett. 1988,
29, 6125-6126. (d) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C.
Tetrahedron Lett. On the Mechanism of Deoxygenation of
Secondary Alcohols by Tin Hydride Reduction of Methyl
Xanthates and other Thiocarbonyl Derivatives. 1990, 31, 3991-3994.
(e) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C.;
Hypophosphorous Acid and its Salts: New Reagents for Radical
Chain Deoxygenation, Dehalogenation and Deamination.
Tetrahedron Lett. 1992, 33, 5709-5712. (f) Lopez, R. M.; Hays, D. S.;
Fu, G. C. Bu3SnH-Catalyzed Barton−McCombie Deoxygenation of
Alcohols. J. Am. Chem. Soc. 1997, 119, 6949–6950. (g) Studer, A.;
Amrein, S.; Schleth, F.; Schulte, T.; Walton, J. C. Silylated
Cyclohexadienes as New Radical Chain Reducing Reagents:ꢀ
Preparative and Mechanistic Aspects. J. Am. Chem. Soc. 2003, 125,
5726–5733. (h) Spiegel, D. A.; Wiberg, K. B.; Schachere, L. N.;
Medeiros, M. R.; Wood, J. L. Deoxygenation of Alcohols
Employing Water as the Hydrogen Atom Source. J. Am. Chem. Soc.
2005, 127, 12513-12515. (i) Soulard, V.; Villa, G.; Vollmar, D. P.;
Radical Deuteration with D2O: Catalysis and Mechanistic Insights.
Renaud, P. J. Am. Chem. Soc. 2018, 140, 155-158.
(3) (a) Gaylord, N. G. Reduction with Complex Metal Hydrides,
Interscience Publishers: New York, 1956; pp 855-875. (b) Vowinkel,
E.; Buthe, I. Eine einfache Methode zur Reduktion von Alkoholen
zu Kohlenwasserstoffen. Chem. Ber. 1974, 107, 1353-1359. (c)
Masamune, S.; Rossy, P. A.; Bates, G. S. Reductive Removal of Halo
and Mesyloxy Groups with a Copper(I) Complex. J. Am. Chem. Soc.
1973, 95, 6452–6454. (d) Masamune, S.; Bates, G. S.; Georghiou, P.
E. Reactions of Lithium Alkyl and Alkynyl Cuprates. Selective
Removal of Halo and Mesyloxy Groups and Reduction of α,β-
Unsaturated Ketones. J. Am. Chem. Soc. 1974, 96, 3686–3688. (e)
Thomas, S.; Huynh, T.; Enriquez-Rios, V.; Singaram, B.
Aminoborohydrides 14. Lithium Aminoborohydrides in the
Selective Reduction or Amination of Alkyl Methanesulfonate
Esters. Org. Lett. 2001, 3, 3915-3918. (f) Dang, H.; Cox, N.; Lalic, G.
Copper‐Catalyzed Reduction of Alkyl Triflates and Iodides: An
Efficient Method for the Deoxygenation of Primary and Secondary
Alcohols. Angew. Chem. Int. Ed. 2014, 53, 752–756. (g) Haibach, M.
C.; Stoltz, B. M.; Grubbs, R. H. Catalytic Reduction of Alkyl and
Aryl Bromides Using Propan-2-ol. Angew. Chem. Int. Ed. 2017, 56,
15123 –15126. (h) Chatterjee, I.; Porwal, D.; Oestreich, M. B(C6F5)3-
(4) For selected examples, see: (a) Schlaf, M.; Ghosh, P.; Fagan,
P. J.; Hauptman, E.; Bullock, R. M. Metal-Catalyzed Selective
Deoxygenation of Diols to Alcohols. Angew. Chem., Int. Ed. 2001,
40, 3887-3890. (b) Schlaf, M.; Ghosh, P.; Fagan, P. J.; Hauptman,
E.; Bullock, R. M. Catalytic Deoxygenation of 1,2‐Propanediol to
Give n‐Propanol. Adv. Synth. Catal. 2009, 351, 789 – 800. (c)
Foskey, T. J. A.; Heinekey, D. M.; Goldberg, K. I. Partial
Deoxygenation of 1,2-Propanediol Catalyzed by Iridium Pincer
Complexes. ACS Catal. 2012, 2, 1285−1289. (d) Lao, D. B.; Owens,
A. C. E.; Heinekey, D. M.; Goldberg, K. I. Partial Deoxygenation of
Glycerol Catalyzed by Iridium Pincer Complexes. ACS Catal. 2013,
3, 2391−2396.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(5) Brewster, J. H.; Osman, S. F.; Bayer, H. O.; Hopps, H. B.
Hydrogenolyses with Chloroaluminum Hydrides. IV. Saturated
and Homobenzylic Alcohols. J. Org. Chem. 1964, 29, 121-123. (b)
Gribble, G. W.; Leese, R. M. Reactions of Sodium Borohydride in
Acidic Media; IV. Reduction of Diarylmethanols and
Triarylmethanols in Trifluoroacetic Acid. Synthesis 1977, 172-176.
(c) Baik, W.; Lee, H. J.; Koo, S.; Kim, B. H. LiAlH4 Promoted
Reductive Deoxygenation of Hydroxybenzyl Alcohols via
Benzoquinone Methide Intermediates. Tetrahedron Lett. 1998, 39,
8125-8128. (d) Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J.-X.;
Yamamoto, Y. A Novel B(C6F5)3-Catalyzed Reduction of Alcohols
and Cleavage of Aryl and Alkyl Ethers with Hydrosilanes. J. Org.
Chem. 2000, 65, 6179-6186. (e) Yasuda, M.; Onishi, Y.; Ueba, M.;
Miyai, T.; Baba, A. Direct Reduction of Alcohols:ꢀ Highly
Chemoselective Reducing System for Secondary or Tertiary
Alcohols Using Chlorodiphenylsilane with a Catalytic Amount of
Indium Trichloride. J. Org. Chem. 2001, 66, 7741-7744. (f) Egi, M.;
Kawai, T.; Umemura, M.; Akai, S. Heteropolyacid-Catalyzed
Direct Deoxygenation of Propargyl and Allyl Alcohols. J. Org.
Chem. 2012, 77, 7092-7097. (g) Dobmeier, M.; Herrmann, J. M.;
Lenoir, D.; König, B. Reduction of Benzylic Alcohols and α-
Hydroxycarbonyl Compounds by Hydriodic Acid in a Biphasic
Reaction Medium. Beilstein J. Org. Chem. 2012, 8, 330-336. (h) Seo,
S. W.; Song, H. S.; Song, J. H. Kim, In, I.; Park, C. P. Microreactor
Mediated Deoxygenation of Benzylic Alcohols in a Biphasic
Organic-Aqueous Medium. Tetrahedron Lett. 2015, 56, 2795-2798.
(i) Yang, Z.; Kumar, R. K.; Liao, P.; Liu, Z.; Li, X.; Bi, X. Chemo-
and Regioselective Reductive Deoxygenation of 1-En-4-yn-ols into
1,4-Enynes through FeF3 and TfOH Co-catalysis. Chem. Commun.
2016, 52, 5936. (j) Drosos, N.; Morandi, B. Boron‐Catalyzed
Regioselective Deoxygenation of Terminal 1,2‐Diols to 2‐Alkanols
Enabled by the Strategic Formation of
a Cyclic Siloxane
Intermediate. Angew. Chem., Int. Ed. 2015, 54, 8814–8818. (k)
Cheng, G.-J.; Drosos, N.; Morandi, B.; Thiel, W. Computational
Study of B(C6F5)3-Catalyzed Selective Deoxygenation of 1,2-Diols:
Cyclic and Noncyclic Pathways. ACS Catal. 2018, 8, 1697–1702.
(6) (a) Huang, J.-L.; Dai, X.-J.; Li, C.-J. Iridium-catalyzed Direct
Dehydroxylation of Alcohols. Eur. J. Org. Chem. 2013, 6496-6500.
(b) Dai, X.-J.; Li, C.-J. En Route to a Practical Primary Alcohol
Deoxygenation. J. Am. Chem. Soc. 2016, 138, 5433-5440. (c) Bauer,
J. O.; Chakraborty, S.; Milstein, D. Manganese-Catalyzed Direct
Deoxygenation of Primary Alcohols. ACS Catal. 2017, 7, 4462-
4466.
(7) (a) Liu, J.-t.; Yang, S.; Tang, W.; Yang, Z.; Xu, J. Iridium-
Catalyzed Efficient Reduction of Ketones in Water with Formic
Acid as a Hydride Donor at Low Catalyst Loading. Green Chem.
2018, 20, 2118-2124. (b) Yang, Z.; Zhu, Z.; Luo, R.; Qiu, X.; Liu, J.-t.;
Yang, J.-K.; Tang, W. Iridium-Catalyzed Highly Efficient
ACS Paragon Plus Environment