1806 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 5
Ingrassia et al.
(9) Dembitsky, V. M.; Gloriozova, T. A.; Poroikov, V. V. Novel
antitumor agents: Marine sponge alkaloids, their synthetic analogs
and derivatives. Mini-ReV. Med. Chem. 2005, 5, 319-336.
(10) Blaszczyk, K.; Paryzek, Z. Oxidation of homoallylic steroidal alcohols
with pyridinium chlorochromate. The synthesis of steroidal 4-en-
3,6-diones. Synth. Commun. 1994, 24, 3255-3259.
(11) Braekman, J. C.; Van Quaquebeke, E.; Ingrassia, L.; Dewelle, J.;
Kiss, R.; Darro, F. Steroid compounds with an anti-tumor activity.
Patent WO2004/055039, 2004.
(12) Braekman, J. C.; Ingrassia, L.; Nshimyumukiza, P.; Van Quaquebeke,
E.; Dewelle, J.; Van den Hove, L.; Kiss, R.; Darro, F. Glycosylated
steroid derivatives with anti-migratory activity. Patent WO2005/
058934, 2005.
(13) Aguilera, B.; Romero-Ramirez, L.; Abad-Rodriguez, J.; Corrales, G.;
Nieto-Sampedro, M.; Fernandez-Mayoralas, A. Novel disaccharide
inhibitors of human glioma cell division. J. Med. Chem. 1998, 41,
4599-4606.
for up to 28 days postinjection. The detailed experimental
protocols are given in the Supporting Information.
The P388 Subcutaneous Lymphoma Model. The P388
lymphoma model was developed in our laboratory, as detailed
elsewhere.19 Details of the treatments are provided in the
captions to the figures. Additional information is also provided
in the Supporting Information. The potential gain in survival
obtained via a potential antitumor compound was evaluated by
means of the T/C index. This index is the ratio between the
median survival time of the treated animal group (T; n ) 9)
and that of the control group (C; n ) 9).
The Orthotopic U373 Human Glioblastoma Xenograft. In
vivo orthotopic xenografts of human U373 glioblastoma cells
in nude mice were obtained as previously detailed.7 The detailed
protocol is given in the Supporting Information.
Statistical Analyses. Statistical comparisons between control
and the treated groups were made by first carrying out the
Kruskal-Wallis test (a nonparametric one-way analysis of
variance), and, where this test revealed significant differences,
we investigated whether any of the groups treated differed from
control. For this purpose we applied the Dunn multiple
comparison procedure (2-sided test) adapted to the special case
of the comparisons of treatments and control, i.e. where only
(k - 1) comparisons were carried out among the k groups tested
by the Kruskal-Wallis test (instead of the possible k(k - 1)/2
comparisons considered in the general procedure). The levels
of statistical significance associated with the T/C-related survival
indices were determined by using Gehan’s generalized Wilcoxon
test. All these statistical analyses were carried out using Statistica
(Statsoft, Tulsa, OK).
(14) Nieto-Sampedro, M.; Bailon, C.; Fernandez-Mayoralas, A.; Martin-
Lomas, M.; Mellstrom, B.; Naranjo, J. R. Experimental brain
glioma: Growth arrest and destruction by a blood-group-related
tetrasaccharide. J. Neuropathol. Exp. Neurol. 1996, 55, 169-177.
(15) Danguy, A.; Camby, I.; Kiss, R. Galectins and cancer. Biochim.
Biophys. Acta 2002, 1572, 285-293.
(16) Liu, F. T.; Rabinovich, G. A. Galectins as modulators of tumour
progression. Nat. ReV. Cancer 2005, 5, 29-41.
(17) Tavares, R.; Randoux, T.; Braekman, J. C.; Daloze, D. Hemisynthesis
of (20S,24R)-20,24-Epoxy-3â,16â,25-trihydroxy-6-oxo-5R-choles-
tane 16-acetate from diosgenin. Tetrahedron 1993, 49, 5079-5090.
(18) Pihl, A. UICC Study group on chemosensitivity testing of human
tumors. ProblemssApplicationssFuture prospects. Int. J. Cancer
1986, 37, 1-5.
(19) Darro, F.; Decaestecker, C.; Gaussin, J. F.; Mortier, S.; Van Ginckel,
R.; Kiss, R. Are syngeneoic mouse tumor models still valuable
experimental models in the field of anti-cancer drug discovery? Int.
J. Oncol. 2005, 27, 607-616.
(20) Camphausen, K.; Purow, B.; Sproull, M.; Scott, T.; Ozawa, T.; Deen,
D. F.; Tofilon, P. J. Influence of in vivo growth on human glioma
cell line gene expression: convergent profiles under orthotopic
conditions. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8287-8292.
(21) Sedletska, Y.; Giraud-Panis, M. J.; Malinge, J. M. Cisplatin is a DNA-
damaging antitumour compound triggering multifactorial biochemical
responses in cancer cells: importance of apoptotic pathways. Curr.
Med. Chem.: Anti-Cancer Agents 2005, 5, 251-265.
(22) Camby, I.; Belot, N.; Rorive, S.; Lefranc, F.; Maurage, C. A.; Lahm,
H.; Kaltner, H.; Hadari, Y.; Ruchoux, M. M.; Brotchi, J.; Zick, Y.;
Salmon, I.; Gabius, H. J.; Kiss, R. Galectins are differentially
expressed in supratentorial pilocytic astrocytomas, astrocytomas,
anaplastic astrocytomas and glioblastomas, and significantly modulate
tumor astrocyte migration. Brain Pathol. 2001, 11, 12-26.
(23) Camby, I.; Belot, N.; Lefranc, F.; Sadeghi, N.; de Launoit, Y.; Kaltner,
H.; Musette, S.; Darro, F.; Danguy, A.; Salmon, I.; Gabius, H. J.;
Kiss, R. Galectin-1 modulates human glioblastoma cell migration
into the brain through modifications to the actin cytoskeleton and
the levels of expression of small GTPases. J. Neuropathol. Exp.
Neurol. 2002, 61, 585-597.
(24) Camby, I.; Decaestecker, C.; Lefranc, F.; Kaltner, H.; Gabius, H. J.;
Kiss, R. Galectin-1 knocking down in human U87 glioblastoma cells
alters their gene expression pattern. Biochem. Biophys. Res. Commun.
2005, 335, 27-35.
(25) Moisan, S.; Demers, M.; Mercier, J.; Magnaldo, T.; Potworowski,
E. F.; St-Pierre, Y. Upregulation of galectin-7 in murine lymphoma
is associated with progression toward an aggressive phenotype.
Leukemia 2003, 17, 751-759.
(26) Demers, M.; Magnaldo, T.; St-Pierre, Y. A novel function for
galectin-7: Promoting tumorigenesis by up-regulating MMP-9 gene
expression. Cancer Res. 2005, 65, 5205-5210.
(27) Saussez, S.; Kiss, R. Galectin-7. Cell. Mol. Life Sci., in press.
(28) Branle, F.; Lefranc, F.; Camby, I.; Jeuken, J.; Geurts-Moespot, A.;
Sprenger, S.; Sweep, F.; Kiss, R.; Salmon, I. Evaluation of the
efficiency of chemotherapy in in ViVo orthotopic models of human
glioma cells with and without 1p19 deletions and in C6 rat orthotopic
allografts serving for the evaluation of surgery combined with
chemotherapy. Cancer 2002, 95, 641-655.
Acknowledgment. The present work has been financed by
grants awarded by the “Re´gion de Bruxelles-Capitale” (Brussels,
Belgium).
Supporting Information Available: The analyses covering all
the compounds used in this work (melting points, elemental
analyses, optical rotations, HPLC analyses, 1H and 13C NMR, mass
spectra, and IR spectral data) and the pharmacology of the P388
subcutaneous model and the orthotopic U373 human glioblastoma
model. This material is available free of charge via the Internet at
References
(1) Kim, D.; Dan, H. C.; Park, S.; Yang, L.; Liu, Q.; Kaneko, S.; Ning,
J.; He, L.; Yang, H.; Sun, M.; Nicosia, S. V.; Cheng, J. Q. AKT/
PKB signaling mechanisms in cancer and chemoresistance. Front.
Biosci. 2005, 10, 975-987.
(2) Stauffer, F.; Holzer, P.; Garcia-Echeverria, C. Blocking the PI3K/
PKB pathway in tumor cells. Curr. Med. Chem.: Anti-Cancer Agents
2005, 5, 449-462.
(3) Kumar, R.; Hung, M. C. Signaling intricacies take center stage in
cancer cells. Cancer Res. 2005, 65, 2511-2515.
(4) Lefranc, F.; Brotchi, J.; Kiss, R. Possible future issues in the treatment
of glioblastomas: special emphasis on cell migration and the
resistance of migrating glioblastoma cells to apoptosis. J. Clin. Oncol.
2005, 23, 2411-2422.
(5) Joseph, B.; Darro, F.; Behard, A.; Lesur, B.; Collignon, F.; Decae-
stecker, C.; Frydman, A.; Guillaumet, G.; Kiss, R. 3-Aryl-2-quinolone
derivatives: synthesis and characterization of in vitro and in vivo
antitumor effects with emphasis on a new therapeutical target
connected with cell migration. J. Med. Chem. 2002, 45, 2543-2555.
(6) Lefranc, F.; Yeaton, P.; Brotchi, J.; Kiss, R. Cimetidine, an
unexpected anti-tumor agent, and its potential for the treatment of
glioblastoma. Int. J. Oncol. 2006, in press.
(7) Lefranc, F.; James, S.; Camby, I.; Gaussin, J. F.; Darro, F.; Brotchi,
J.; Gabius, H. J.; Kiss, R. Combined cimetidine and temozolomide,
compared with temozolomide alone: significant increases in survival
in nude mice bearing U373 human glioblastoma multiforme ortho-
topic xenograft. J. Neurosurg. 2005, 102, 706-714.
(8) Mayer, A. M.; Gustafson, K. R. Marine pharmacology in 2000:
Antitumor and cytotoxic compounds. Int. J. Cancer 2003, 105, 291-
299.
(29) Kanzawa, T.; Germano, I. M.; Komata, T.; Ito, H.; Kondo, Y.; Kondo,
S. Role of autophagy in temozolomide-induced cytotoxicity for
malignant glioma cells. Cell Death Differ. 2004, 11, 448-457.
(30) Stupp, R.; Mason, W. P.; van den Bent, M. J.; Weller, M.; Fisher,
B.; Taphoorn, M. J. et al. Radiotherapy plus concomitant and adjuvant
temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987-
996.