C O M M U N I C A T I O N S
treated with either phenyl or tert-butyl Grignard to provide two
nitroxides, 43 and 44. Reductive benzylation in the presence of
copper powder then afforded two further alkoxylamines, which were
individually tagged to give 45 and 46. After 24 h at reflux in
dichloroethane an equimolar mixture of 45 and 46 was transformed
into a library of 45-48, which could be isolated in yields of 96,
95, 92, and 95%, respectively, thereby establishing the validity of
the PRE-based hetereobivalent library expansion for a second class
of hydroxylamines.
heterobivalent expansion, each member of the complete nine
compound library would have a different fluorine atom count.
Heterobivalent library expansion of these compounds proceeded
smoothly in tBuOH at reflux overnight, and nine compounds were
resolved by analytical fluorous HPLC (Figure 4). Preparative HPLC
over fluorous silica gel was difficult, presumably owing to the
complication of the differing polarities of the various compounds.
However, separation was achieved with reasonable efficiency by
cutting the library into three fractions of differing polarity on normal
silica gel and then subjecting each fraction to fluorous HPLC.11
While the temperatures required for heterobivalent library
expansion by these methods may preclude their use in a dynamic
combinatorial sense for discovery of inhibitors of many enzymes,12
these systems may prove ideal for targeting thermophilic bacte-
ria.13,14
Acknowledgment. A.A.B. thanks the University of Illinois at
Chicago for a Moriarty Scholarship.
Supporting Information Available: Experimental details and
characterization. This material is available free of charge via the Internet
A library of five N-acyl TEMPOL ethers was then successfully
expanded to a 25-member library in which each component could
be readily identified in the ESI-mass spectrum (Figure 3).
References
(1) Fischer, H. Chem. ReV. 2001, 101, 3581-3610.
(2) Hawker, C. J. In Handbook of Radical Polymerization; Matyjaszewki,
K., Davis, T. P., Eds.; Wiley: Hoboken, 2002; pp 463-521.
(3) (a) Studer, A. Chem. Soc. ReV. 2004, 33, 267-273. (b) Janza, B.; Studer,
A. Org. Lett. 2006, 8, 1875-1878. (c) Bertin, G.; Gigmes, G.; Marque,
S. R. A.; Tordo, P. Tetrahedron 2005, 61, 8752-8761. (d) Leroi, C.;
Fenet, B.; Couturier, J.-L.; Guerret, O.; Ciufolini, M. A. Org. Lett. 2003,
5, 1079-1081.
(4) Quiclet-Sire, B.; Zard, S. Z. Top. Curr. Chem. 2006, 264, 201-236.
(5) Chiefari, J.; Rizzardo, E. In Handbook of Radical Polymerization;
Matyjaszewki, K., Davis, T. P., Eds.; Wiley: Hoboken, 2002; pp 629-
690.
(6) Heterobivalent compounds have two distinctly different binding domains,
as opposed to homobivalent compounds which have two identical binding
motifs. Reyes, S. J.; Burgess, K. Chem. Soc. ReV. 2006, 35, 416-423.
(7) (a) Boger, D. L.; Chai, W. Tetrahedron 1998, 54, 3955-3970. (b) Maly,
D. J.; Choong, I. C.; Ellman, J. A. Proc. Natl. Acad. Sci. U.S.A. 2000,
97, 2419-2424. (c) Nicolaou, K. C.; Hughes, R.; Pfefferkorn, J. A.;
Barluenga, S.; Roecker, A. J. Chem. Eur. J. 2001, 7, 4280-4295. (d)
Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart,
J. F. Angew. Chem., Int. Ed. 2002, 41, 899-952.
(8) Exceptions: (a) Su, S.; Acquilano, D. E.; Arumugasamy, J.; Beeler, A.
B.; Eastwood, E. L.; Giguere, J. R.; Lan, P.; Lei, X.; Min, G. K.; Yeager,
A. R.; Zhou, Y.; Panek, J. S.; Snyder, J. K.; Schaus, S. E.; Porco, J. A.
Org. Lett. 2005, 7, 2751-2754. (b) Krasinski, A.; Radic, Z.; Manetsch,
R.; Raushel, J.; Taylor, P.; Sharpless, K. B.; Kolb, H. C. J. Am. Chem.
Soc. 2005, 127, 6686-6692. (c) Harrison, B. A.; Gierasch, T. M.; Neilan,
C.; Pasternak, G. W.; Verdine, G. L. J. Am. Chem. Soc. 2002, 124, 13352-
13353. (d) Slagt, V. F.; Roeder, M.; Kamer, P. C. J.; van Leeuwen, P. W.
N. M.; Reek, J. N. H. J. Am. Chem. Soc. 2004, 126, 4056-4057.
(9) Matyjaszewski, K.; Woodworth, B. E.; Zhang, X.; Gaynor, S. G.; Metzner,
Z. Macromolecules 1998, 31, 5955-5957.
Figure 3. Twenty-five-member PRE library with initiators in red.
(10) (a) Curran, D. P.; Zhang, Q.; Richard, C.; Lu, H.; Gudipati, V.; Wilcox,
C. S. J. Am. Chem. Soc. 2006, 128, 9561-9573. (b) Manku, S.; Curran,
D. P. J. Org. Chem. 2005, 70, 4470-4473. (c) Curran, D. P.; Moura-
Letts, G.; Pohlman, M. Angew. Chem., Int. Ed. 2006, 45, 2423-2426.
(11) In an operational setting involving screening of an heterobivalent library
separation should not be necessary. For example, if a 25-member library
derived by expansion of five compounds shows activity, it should suffice
to prepare five 16-member libraries each derived by omitting one of the
original five components. Assuming one active compound, a maximum
of two of the five-member libraries will be inactive from which the identity
of a hit will be readily ascertained.
(12) Note, however, the use of RAFT to functionalize a protein at room
temperature with initiation by γ-irradiation. Liu, J.; Bulmus, V.; Herlam-
bang, D. L.; Barner-Kowallik, C.; Stenzel, M. H.; Davis, T. P. Angew.
Chem., Int. Ed. 2007, 46, 3099-3103.
Figure 4. Nine-member fluorous library with initiators in red (number of
F atoms in parentheses).
(13) The use of radical reactions in the presence of enzymes is unusual but
possible, as demonstrated by an elegant radical-mediated racemization of
amines in the presence of a lipase at 80 °C. (a) Gastaldi, S.; Escoubet, S.;
Vanthuyne, N.; Gil, G.; Bertrand, M. P. Org. Lett. 2007, 9, 837-839. (b)
Nechab, M.; Azzi, N.; Vanthuyne, M.; Bertrand, M.; Gastaldi, S.; Gil, G.
J. Org. Chem. 2007, 72, 6918-6923.
Finally, we investigated the possibility of library deconvolution
by a fluorous tagging approach related to the fluorous-mixture
synthesis technique.10 A three-member N-functionalized TEMPOL
ether library was designed in which both the benzyl ether and
TEMPOL moieties carried distinct fluorous tags such that, after
(14) In addition it should be recognized that radicals are widespread intermedi-
ates in enzymic processes. Stubbe, J.; van der Donk, W. A. Chem. ReV.
1998, 98, 705-762.
JA0756321
9
J. AM. CHEM. SOC. VOL. 129, NO. 40, 2007 12107