Page 3 of 4
Journal of the American Chemical Society
aReaction condtions: ketone 5 (0.2 mmol), NH4OAc (0.4 mmol),
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website.
Ru(OAc)2(4e) (0.5 mol%), TFE (0.4 mL), H2 (57 bar), 100 °C, 24
h. The pressure refers to the actual value at 100 oC. The free
amines 6a-t were obtained after neutralizing their corresponding
acetate salts with a base. The ees were determined by chiral
1
2
3
4
Detailed experimental procedures, spectral data, and
analytical data (PDF)
b
HPLC after sample acylation. Ru(OAc)2(4a) was used instead of
Ru(OAc)2(4e). cThe ee was determined by chiral HPLC after
5
6
7
8
9
sample tosylation.
AUTHOR INFORMATION
To demonstrate the significance and practicality of this meth-
odology, scale-up syntheses of key intermediates of drug mole-
cules, including Tecalcet hydrochloride, Cinacalcet, and Ri-
vastigmine were performed (Scheme 3). Tecalcet hydrochloride
and Cinacalcet are drugs that act as a calcimimetic and used to
treat secondary hyperparathyroidism, the former currently in
Phase II clinical trials18 and the latter sold by Amgen under the
trade name of Sensipar in North America and Australia, and of
Mimpara in Europe.19 The critical synthon to Tecalcet hydrochlo-
ride is (R)-1-(3-methoxyphenyl)ethyl amine (6g), which could be
easily accessed under standard conditions with high enantioselec-
tivity (94% ee) and TON up to 500 (Equation 1, Scheme 3). Simi-
larly, the key chiral motif (R)-1-(naphth-1-yl) ethyl amine in
Cinacalcet could be efficiently synthesized with high enantiose-
lectivity (up to 98% ee) and promising efficacy of S/C up to 1000
(Equation 2, Scheme 3). The gram-scale syntheses of these two
key intermediates reveal the potential of practical industrial appli-
cation. Rivastigmine, sold under the trade name of Exelon, is a
parasympathomimetic or cholinergic agent for the treatment of
mild to moderate dementia of the Alzheimer's type and dementia
due to Parkinson's disease.20 As shown in Equation 3 of Scheme 3,
the key intermediate to (R)-Rivastigmine was directly synthesized
via reductive amination of 5v with high efficiency.21
Corresponding Author
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ORCID
Qin Yin: 0000-0003-3534-3786
Xumu Zhang: 0000-0001-5700-0608.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
We are grateful to a start-up fund from Southern University of
Science and Technology, Shenzhen Science and Technology
Innovation Committee (No. KQTD20150717103157174) and
National Natural Science Foundation of China (No. 21432007) for
financial support. We greatly acknowledge professor Martin
Oestreich (Technische Universität Berlin) for proofreading the
manuscript.
REFERENCES
(1) (a) Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.;
Studer, M. Adv. Synth. Catal. 2003, 345, 103-151; (b) Breuer, M.; Ditrich,
K.; Habicher, T.; Hauer, B.; Keßeler, M.; Stürmer, R.; Zelinski, T., Angew.
Chem. Int. Ed. 2004, 43, 788-824; (c) Ager, D. In Science of Synthesis:
Stereoselective Synthesis; de Vries, J. G., Ed.; Thieme: Stuttgart, 2010.; (d)
Stereoselective Formation of Amines, Li, W.; Zhang, X. Eds; Springer:
Berlin Heidelberg, 2014.
Scheme 3. Scale-up Syntheses of Key Intermediates of
Drug Molecules
(2) Wang, C.; Xiao, J., Top. Curr. Chem. 2014, 343, 261-282.
(3) For selected recent reviews on TM-catalyzed asymmetric imine hydro-
genation, see: (a) Xie, J. H.; Zhu, S. F.; Zhou, Q. L. Chem. Rev. 2011, 111,
1713-1760; (b) Xiao, J.; Tang, W. Synthesis 2014, 46, 1297-1302.
(4) Nugent, T. C.; El-Shazly, M., Adv. Synth. Catal. 2010, 352, 753-819.
(5) (a) Blaser, H.-U.; Buser, H.-P.; Jalett, H.-P.; Pugin, B.; Spindler, F.,
Synlett 1999, 867-868; (b) Chi, Y.; Zhou, Y.-G.; Zhang, X., J. Org. Chem.
2003, 68, 4120-4122; (c) Li, C.; Villa-Marcos, B.; Xiao, J., J. Am. Chem.
Soc. 2009, 131, 6967-6969; (d) Rubio-Pérez, L.; Pérez-Flores, F. J.;
Sharma, P.; Velasco, L.; Cabrera, A., Org. Lett. 2009, 11, 265-268; (e)
Villa-Marcos, B.; Li, C.; Mulholland, K. R.; Hogan, P. J.; Xiao, J., Mole-
cules 2010, 15, 2453; (f) Wang, C.; Pettman, A.; Bacsa, J.; Xiao, J.,
Angew. Chem. Int. Ed. 2010, 49, 7548-7552; (g) Zhou, S.; Fleischer, S.;
Jiao, H.; Junge, K.; Beller, M., Adv. Synth. Catal. 2014, 356, 3451-3455;
(h) Yang, P.; Lim, L. H.; Chuanprasit, P.; Hirao, H.; Zhou, J., Angew.
Chem. Int. Ed. 2016, 55, 12083-12087; (i) Huang, H.; Wu, Z.; Gao, G.;
Zhou, L.; Chang, M., Org. Chem. Front. 2017, 4, 1976-1980; (j) Li, B.;
Zheng, J.; Zeng, W.; Li, Y.; Chen, L., Synthesis 2017, 49, 1349-1355.
(6) (a) Tararov, V. I.; Kadyrov, R.; Riermeier, T. H.; Borner, A., Chem.
Commun. 2000, 1867-1868; (b) Kadyrov, R.; Riermeier, T. H.;
Dingerdissen, U.; Tararov, V.; Börner, A., J. Org. Chem. 2003, 68, 4067-
4070.
(7) (a) Zhou, P.; Zhang, Z.; Jiang, L.; Yu, C.; Lv, K.; Sun, J.; Wang, S.,
Appl. Catal. B 2017, 210, 522-532; (b) Huang, H.; Liu, X.; Zhou, L.;
Chang, M.; Zhang, X., Angew. Chem. Int. Ed. 2016, 55, 5309-5312; (c)
Zhou, H.; Liu, Y.; Yang, S.; Zhou, L.; Chang, M., Angew. Chem. Int. Ed.
2017, 56, 2725–2729; (d) Williams, G. D.; Pike, R. A.; Wade, C. E.; Wills,
M., Org. Lett. 2003, 5, 4227-4230; (e) Strotman, N. A.; Baxter, C. A.;
Brands, K. M. J.; Cleator, E.; Krska, S. W.; Reamer, R. A.; Wallace, D. J.;
Wright, T. J., J. Am. Chem. Soc. 2011, 133, 8362-8371; (f) Chang, M.; Liu,
S.; Huang, K.; Zhang, X., Org. Lett. 2013, 15, 4354-4357.
In conclusion, we have established a highly chemo- and enanti-
oselective catalytic system for the direct reductive amination of
simple ketones with ammonium salts and molecular H2. The use
of ammonia acetate as an amine source and H2 as reductant con-
stitutes a facile and user-friendly approach to versatile primary
amines, which can be easily derived into more valuable amine
products. This reaction features broad substrate scope, good func-
tional group compatibility and excellent enantiocontrol (up to 98%
ee). Key intermediates of three drugs can be easily accessed in
gram scale from commercially available ketones, which showcas-
es the potential of practical usage. In addition, an improved syn-
thetic route to the optimal diphosphine ligand C3-TunePhos was
also developed.
(8) Matsumura, K.; Saito, T., PCT Patent Appl. WO 2005/028419 A3,
2005.
(9) Bunlaksananusorn, T.; Rampf, F., Synlett 2005, 2682-2684.
ASSOCIATED CONTENT
ACS Paragon Plus Environment