2280
Z.-P. Zhan, H.-J. Liu
LETTER
(6) (a) Luzung, M. R.; Toste, F. D. J. Am. Chem. Soc. 2003, 125,
15760. (b) Sherry, B. D.; Radosevich, A. T.; Toste, F. D. J.
Am. Chem. Soc. 2003, 125, 6076. (c) Kennedy-Smith, J. J.;
Young, L. A.; Toste, F. D. Org. Lett. 2004, 6, 1325.
(7) Georgy, M.; Boucard, V.; Campagne, J. M. J. Am. Chem.
Soc. 2005, 127, 14180.
(8) (a) Mahrwald, R.; Quint, S. Tetrahedron 2000, 56, 7463.
(b) Bartels, A.; Mahrwald, R.; Quint, S. Tetrahedron Lett.
1999, 40, 5989.
with alcohols, leading to the construction of C–O bonds.
However, phenolic compounds such as phenol, b-naph-
thol, methoxybenzene, and b-methoxynaphthalene react-
ed with propargylic esters to form C–C bonds under
similar reaction conditions. In comparison to cobalt, rhe-
nium, ruthenium, titanium, and gold complexes, our re-
ported catalyst FeCl3 offers several advantages such as
cheaper cost, commercial availability, and milder reaction
conditions. Further investigations on the elucidation of the
detailed reaction mechanism and broadening the scope of
this methodology are currently ongoing in our laboratory.
(9) Mahrwald, R.; Quint, S.; Scholtis, S. Tetrahedron 2002, 58,
9847.
(10) Very recently new methodologies employing Brønsted acids
as the catalysts have been developed although a higher
temperature was needed or the reaction scope is somewhat
narrow, see: (a) Sanz, R.; Martínez, A.; Álvarez-Gutiérrez,
J. M.; Rodríguez, F. Eur. J. Org. Chem. 2006, 1383.
(b) Liu, J. H.; Muth, E.; Flörke, U.; Henkel, G.; Merz, K.
Adv. Synth. Catal. 2006, 348, 456.
Acknowledgment
The project was supported by the National Natural Science Found-
ation of China (NO. 30572250).
(11) We suppose that HCl (from the reaction of water with FeCl3)
might be the actual catalyst, therefore a control experiment
was done but no reaction occurred in a model reaction
between 1a and 1-butanol in the presence of 10% HCl.
(12) (a) Preparation of propargylic acetates: Bartels, A.;
Mahrwald, R.; Müller, K. Adv. Synth. Catal. 2004, 346, 483.
(b) Propargylic Ethers; Typical Procedure
References and Notes
(1) (a) Hudrlik, P. F.; Hudrlik, A. M. In The Chemistry of the
Carbon-Carbon Triple Bond; Patai, S., Ed.; John Wiley &
Sons: Chichester, 1978, Chap. 7, 199. (b) Trost, B. M.
Comprehensive Organic Synthesis, Vol. 4; Fleming, I., Ed.;
Pergamon Press: Oxford, 1991.
(2) Review articles: (a) Nicholas, K. M. Acc. Chem. Res. 1987,
20, 207. (b) Caffyn, A. J. M.; Nicholas, K. M. In
Comprehensive Organometallic Chemistry II, Vol. 12; Abel,
E. W.; Stone, F. G. A.; Wilkinson, J., Eds.; Pergamon Press:
Oxford, 1995, Chap. 7.1, 685. (c) Green, J. R. Curr. Org.
Chem. 2001, 5, 809. (d) Teobald, B. J. Tetrahedron 2002,
58, 4133. (e) Kuhn, O.; Rau, D.; Mayr, H. J. Am. Chem. Soc.
1998, 120, 900.
1,3-Diphenylprop-2-ynyl acetate (1a) (0.250 g, 1 mmol),
n-BuOH (0.222 g, 3.0 mmol), MeCN (2 mL), and anhyd
FeCl3 (0.008 g, 0.05 mmol) were successively added to a
5-mL flask, and then the mixture was stirred magnetically at
r.t. for 2.5 h. The solution was concentrated under reduced
pressure by an aspirator and then the residue was purified by
silica gel column chromatography to afford 3-butoxy-1,3-
diphenylprop-1-yne (2a) as a clear colorless oil (0.243 g,
92%).
The 1H NMR and 13C NMR spectra of known compounds
2b, 2d, 2g, 2h, 2i, 2k,6b 2c, 2e, 2f,8a 2j,14 2l,4a 2m, 2o, 2p,6c
and 2q5a are in accordance with those previously reported.
Compound 2a: Pale yellow oil. IR (film): 3063, 3032, 2229,
1597, 1493, 1452 cm–1. 1H NMR (400 MHz, CDCl3):
d = 0.94 (t, 3 H, J = 7.2 Hz), 1.39–1.50 (m, 2 H), 1.62–1.71
(m, 2 H), 3.55–3.62 (m, 1 H), 3.72–3.80 (m, 1 H), 5.39 (s, 1
H), 7.24–7.63 (m, 10 H). 13C NMR (100 MHz, CDCl3):
d = 14.3, 19.8, 32.0, 68.3, 72.0, 87.1, 87.2, 122.3, 127.0,
127.8, 128.0, 128.1, 131.3, 138.5. Anal. Calcd for C19H20O
(264.36): C, 86.32; H, 7.63. Found: C, 86.03; H, 7.42.
Compound 2n: Yellow oil. IR (film): 3387, 1598, 1510,
1452cm–1. 1H NMR (400 MHz, CDCl3): d = 0.92 (t, 3 H,
J = 7.2 Hz), 1.38–1.59 (m, 4 H), 2.27 (td, 2 H, J = 7.2, 2.0
Hz), 4.66–4.76 (br s, 1 H), 4.91 (s, 1 H), 6.72–6.77 (m, 2 H),
7.16–7.25 (m, 3 H), 7.29 (t, 2 H, J = 7.6 Hz), 7.32–7.37 (m,
2 H). 13C NMR (100 MHz, CDCl3): d = 13.7, 18.7, 22.1,
31.1, 42.5, 80.8, 85.0, 115.3, 126.6, 127.8, 128.5, 129.1,
135.0, 142.8, 154.2. Anal. Calcd for C19H20O (264.36): C,
86.32; H, 7.63. Found: C, 86.51; H, 7.35.
(3) Nicholas, K. M.; Mulvaney, M.; Bayer, M. J. Am. Chem.
Soc. 1980, 102, 2508.
(4) (a) Nishibayashi, Y.; Wakiji, I.; Hidai, M. J. Am. Chem. Soc.
2000, 122, 11019. (b) Nishibayashi, Y.; Wakiji, I.; Ishii, Y.;
Uemura, S.; Hidai, M. J. Am. Chem. Soc. 2001, 123, 3393.
(c) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.;
Uemura, S. J. Am. Chem. Soc. 2002, 124, 11846.
(d) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Milton, M.
D.; Hidai, M.; Uemura, S. Angew. Chem. Int. Ed. 2003, 42,
2681. (e) Milton, M. D.; Inada, Y.; Nishibayashi, Y.;
Uemura, S. Chem. Commun. 2004, 2712. (f) Nishibayashi,
Y.; Milton, M. D.; Inada, Y.; Yoshikawa, M.; Wakiji, I.;
Hidai, M.; Uemura, S. Chem. Eur. J. 2005, 11, 1433.
(g) Nishibayashi, Y.; Inada, Y.; Hidai, M.; Uemura, S. J. Am.
Chem. Soc. 2002, 124, 7900.
(5) The ruthenium-catalyzed propargylic substitution was
reported to run via allenylidene complex intermediates
which can be produced only from the propargylic alcohols
bearing terminal alkyne group see ref. 4. On the other hand
ruthenium-catalyzed substitution of propargylic alcohols
bearing an internal alkyne group were also investigated, see:
(a) Nishibayashi, Y.; Inada, Y.; Yoshikawa, M.; Hidai, M.;
Uemura, S. Angew. Chem. Int. Ed. 2003, 42, 1495.
(b) Inada, Y.; Nishibayashi, Y.; Hidai, M.; Uemura, S. J. Am.
Chem. Soc. 2002, 124, 15172.
(13) In TiCl4-catalyzed nucleophilic substitution of 1-phenyl-
hept-2-ynyl acetate(1b) with phenol the ether was obtained
in moderate yield, see: (a) Mahrwald, R.; Quint, S.
Tetrahedron 2000, 56, 7463. (b) Bartels, A.; Mahrwald, R.;
Quint, S. Tetrahedron Lett. 1999, 40, 5989.
(14) Henseling, K.-O. Chem. Ber. 1977, 110, 1027.
Synlett 2006, No. 14, 2278–2280 © Thieme Stuttgart · New York