Communication
Organic & Biomolecular Chemistry
2 R. G. S. Berlinck, A. C. B. Burtoloso, A. E. Trindade-Silva,
S. Romminger, R. P. Morais, K. Bandeira and
C. M. Mizuno, Nat. Prod. Rep., 2010, 27, 1871–1907.
3 R. G. S. Berlinck, A. C. B. Burtoloso and M. H. Kossuga,
Nat. Prod. Rep., 2008, 25, 919–954.
4 T. Ishikawa and T. Kumamoto, Synthesis, 2006, 737–752.
5 R. G. S. Berlinck and M. H. Kossuga, Nat. Prod. Rep., 2005,
22, 516–550.
6 R. G. S. Berlinck, Nat. Prod. Rep., 1996, 13, 377–409.
7 E. De Clercq, Nat. Rev. Drug Discovery, 2006, 5, 1015.
8 M. von Itzstein, Nat. Rev. Drug Discovery, 2007, 6, 967.
9 D. W. Oliver, I. C. Dormehl, J. E. S. Wikberg and
M. Dambrova, Med. Chem. Res., 2004, 13, 427–438.
10 T. Ishikawa and T. Kumamoto, Synthesis, 2006, 737–752,
DOI: 10.1055/s-2006-926325.
Scheme 3 Proposed mechanism.
and 2 in toluene in the absence of I2 and TBHP generated only
a trace amount of the guanidine product after 2 h (Scheme 2a).
When TBHP, but not I2, was present as a desulfurization
reagent, the desired guanidine product was isolated in 35%
yield (Scheme 2b). The product was possibly generated by the
substitution of an amine to aminoiminomethanesulfonic and
-sulfinic acids which were formed by the oxidation of the
thiourea.54 These experiments demonstrated that both I2 and
TBHP were essential. Radical trapping experiments using
TEMPO as a scavenger show that none of the trapping
products were detected which indicate that the ionic pathway
is more feasible (Scheme 2c).
On the basis of our control experiments and iodine-
mediated desulfurization process of thiourea,32,53,55–59 we
propose the reaction pathway outlined in Scheme 3.
The reaction begins with the I2-mediated desulfurization of
N,N′-di-Boc-thiourea to give S and active carbodiimide, and the
resulting activated carbodiimide is attacked in situ by the free
amine substrate to give the corresponding guanidine. The HI
generated in the desulfurization step is oxidized by TBHP to
regenerate I2.
11 M. P. Coles, Chem. Commun., 2009, 3659–3676, DOI:
10.1039/B901940E.
12 T. Ishikawa, Chem. Pharm. Bull., 2010, 58, 1555–1564.
13 L. Zong and C.-H. Tan, Acc. Chem. Res., 2017, 50, 842–856.
14 D. Leow and C.-H. Tan, Chem. – Asian J., 2009, 4, 488–507.
15 A. R. Katritzky and B. V. Rogovoy, ARKIVOC, 2005, 49–87.
16 S. Tahir, A. Badshah and R. A. Hussain, Bioorg. Chem.,
2015, 59, 39–79.
17 L. Wang, Y. Chi, W. Zhang and Z. Xi, Chin. J. Org. Chem.,
2018, 38, 1341.
18 M. A. Poss, E. Iwanowicz, J. A. Reid, J. Lin and Z. Gu,
Tetrahedron Lett., 1992, 33, 5933–5936.
19 K. S. Kim and L. Qian, Tetrahedron Lett., 1993, 34, 7677–7680.
20 F. Rodriguez, I. Rozas, J. E. Ortega, J. J. Meana and
L. F. Callado, J. Med. Chem., 2007, 50, 4516–4527.
21 J.-J. Shie, J.-M. Fang, S.-Y. Wang, K.-C. Tsai, Y.-S. E. Cheng,
A.-S. Yang, S.-C. Hsiao, C.-Y. Su and C.-H. Wong, J. Am.
Chem. Soc., 2007, 129, 11892–11893.
22 F. Rodriguez, I. Rozas, J. E. Ortega, A. M. Erdozain,
J. J. Meana and L. F. Callado, J. Med. Chem., 2008, 51,
3304–3312.
23 D. Gupta, S. Varghese Gupta, A. Dahan, Y. Tsume,
J. Hilfinger, K.-D. Lee and G. L. Amidon, Mol. Pharm., 2013,
10, 512–522.
24 S. Aoki, K. Iwaida, N. Hanamoto, M. Shiro and E. Kimura,
J. Am. Chem. Soc., 2002, 124, 5256–5257.
25 B. Kelly and I. Rozas, Tetrahedron Lett., 2013, 54, 3982–3984.
26 H. Ube, D. Uraguchi and M. Terada, J. Organomet. Chem.,
2007, 692, 545–549.
27 S. G. J. Postma, D. T. Brinke, I. N. Vialshin, A. S. Y. Wong
and W. T. S. Huck, Tetrahedron, 2017, 73, 4896–4900.
28 Y. F. Yong, J. A. Kowalski and M. A. Lipton, J. Org. Chem.,
1997, 62, 1540–1542.
29 K. Ohara, J.-J. Vasseur and M. Smietana, Tetrahedron Lett.,
2009, 50, 1463–1465.
Conclusions
In conclusion, we have developed a protocol for the I2-cata-
lyzed guanylation of primary amines with N,N′-di-Boc-thiourea
in the presence of TBHP. Oxidation of the HI byproduct by
TBHP eliminates the need for an extra base to prevent protona-
tion of the free amine. Because I2 and the active intermediate
are generated depending on the nucleophilic addition of the
amine to N,N′-di-Boc-thiourea, this strategy works well for elec-
tronically or sterically deactivated primary anilines.
Conflicts of interest
There are no conflicts to declare.
30 M. V. Costa, L. C. D. Aguiar, L. F. B. Malta, G. M. Viana and
B. B. S. Costa, Tetrahedron Lett., 2016, 57, 1585–1588.
31 P. Fedoseev, N. Sharma, R. Khunt, D. S. Ermolatev and
E. V. Van der Eycken, RSC Adv., 2016, 6, 75202–75206.
Notes and references
1 C. Alonso-Moreno, A. Antiñolo, F. Carrillo-Hermosilla and 32 S. Wangngae, M. Pattarawarapan and W. Phakhodee, J. Org.
A. Otero, Chem. Soc. Rev., 2014, 43, 3406–3425.
Chem., 2017, 82, 10331–10340.
9282 | Org. Biomol. Chem., 2019, 17, 9280–9283
This journal is © The Royal Society of Chemistry 2019