Organic Letters
Letter
(12) (a) Yoo, E. J.; Ahlquist, M.; Kim, S. H.; Bae, I.; Fokin, V. V.;
Sharpless, K. B.; Chang, S. Angew. Chem., Int. Ed. 2007, 46, 1730.
(b) Raushel, J.; Fokin, V. V. Org. Lett. 2010, 12, 4952.
(13) (a) Chattopadhyay, B.; Gevorgyan, V. Org. Lett. 2011, 13, 3746.
(b) Shi, Y.; Gevorgyan, V. Org. Lett. 2013, 15, 5394. For Ni-catalyzed
tranannulation of trizoles with alkynes, see: Miura, T.; Yamauchi, M.;
Murakami, M. Chem. Commun. 2009, 1470.
cis-diamino enones, in which all the atoms of formamides are
incorporated into the product. Although more detailed studies
to elucidate the reaction mechanism are warranted, a plausible
pathway proceeds via an aziridine intermediate. Further studies
on the scope of this novel transformation and on the
applications of the cis-diamino enones are currently underway.
(14) Schults, E. S.; Sarpong, R. J. Am. Chem. Soc. 2013, 135, 4696.
(15) Chuprakov, S.; Kwok, S. W.; Fokin, V. V. J. Am. Chem. Soc.
2013, 135, 4652.
(16) Miura, T.; Tanaka, T.; Hiraga, K.; Stewart, S. G.; Murakami, M.
J. Am. Chem. Soc. 2013, 135, 13652.
ASSOCIATED CONTENT
■
S
* Supporting Information
Detailed experimental procedures, characterization data, and
crystal data (CIF) for 2a. This material is available free of
(17) Parr, B. T.; Green, S. A.; Davies, H. M. J. Am. Chem. Soc. 2013,
135, 4716.
(18) Spangler, J. E.; Davies, H. M. J. Am. Chem. Soc. 2013, 135, 6802.
(19) Miura, T.; Funakoshi, Y.; Murakami, M. J. Am. Chem. Soc. 2014,
136, 2272.
(20) (a) Miura, T.; Biyajima, T.; Fujii, T.; Murakami, M. J. Am. Chem.
Soc. 2012, 134, 194. (b) Miura, T.; Tanaka, T.; Biyajima, T.; Yada, A.;
Murakami, M. Angew. Chem., Int. Ed. 2013, 52, 3883.
(21) Chuprakov, S.; Worrell, B. T.; Selander, N.; Sit, R. K.; Fokin, V.
V. J. Am. Chem. Soc. 2014, 136, 195.
AUTHOR INFORMATION
■
Corresponding Author
Author Contributions
†D. J. Jung and H. J. Jeon contributed equally to this work.
(22) For detailed data for X-ray structure of 2a (CCDC: 989567),
see the Supporting Information.
Notes
The authors declare no competing financial interest.
(23) Formation of deuterium labelled 2a-d100% from the reaction with
DMF-d7 further supports our proposed reaction pathway.
(24) For our selected recent papers on tandem reactions, see:
(a) Chun, Y. S.; Xuan, Z.; Kim, J. H.; Lee, S.-g. Org. Lett. 2013, 15,
3162. (b) Kim, J. H.; Chun, Y. S.; Lee, S.-g. J. Org. Chem. 2013, 78,
11483. (c) Lee, S.; Shin, J. Y.; Lee, S.-g. Chem.Asian J. 2013, 8, 1990.
(d) Shin, J. Y.; Jung, D. J.; Lee, S.-g. ACS Catal. 2013, 3, 525.
(e) Chun, Y. S.; Kim, J. H.; Choi, S. Y.; Ko, Y. O.; Lee, S.-g. Org. Lett.
2012, 14, 6358. (f) Kim, J. H.; Shin, H.; Lee, S.-g. J. Org. Chem. 2012,
77, 1560. (g) Chun, Y. S.; Lee, J. H.; Kim, J. H.; Ko, Y. O.; Lee, S.-g.
Org. Lett. 2011, 13, 6390. (h) Kim, J. H.; Lee, S.-g. Org. Lett. 2011, 13,
1350.
ACKNOWLEDGMENTS
■
This research was supported by the National Research
Foundation of Korea (NRF) (NRF-2011-0016344 and NRF-
2009-0083525). We thank Prof. J. Bouffard in Ewha Womans
University for comments and the Daegu branch of the Korea
Basic Science Research Center for mass spectrometric analyses.
REFERENCES
■
(1) Meth-Cohn, O. The Vilsmeier−Haack Reaction. In Comprehen-
sive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon:
Oxford, 1991; Vol. 2, p 777.
(2) Muzart, J. Tetrahedron 2009, 65, 8313.
(3) (a) Rusina, A.; Vlcek, A. A. Nature 1965, 206, 295. (b) Serp, P.;
̌
Hernandez, M.; Richard, B.; Kalck, P. Eur. J. Inorg. Chem. 2001, 2327.
(c) Coalter, J. N., III; Huffman, J. C.; Caulton, K. G. Organometallics
2000, 19, 3569. (d) Wu, X.; Mahalingam, A. K.; Wan, Y.; Alterman, M.
Tetrahedron Lett. 2004, 45, 4635.
(4) Wan, Y.; Alterman, M.; Larhed, M.; Hallberg, A. J. Org. Chem.
2002, 67, 6232.
(5) (a) Malkhasian, A. Y. S.; Finch, M. E.; Nikolovski, B.; Menon, A.;
Kucera, B. E.; Chavez, F. A. Inorg. Chem. 2007, 46, 2950. (b) Warden,
A. C.; Spiccia, L.; Hearn, M. T. W.; Boas, J. F.; Pilbrow, J. R. J. Chem.
Soc., Dalton Trans. 2005, 1804.
(6) (a) Zawisza, A. M.; Muzart, J. Tetrahedron Lett. 2007, 48, 6738.
(b) Brenda, M.; Knebelkamp, A.; Greiner, A.; Heitz, W. Synlett 1991,
̀
809. (c) Legros, J.-Y.; Primault, G.; Toffano, M.; Riviere, M.-A.; Fiaud,
J.-C. Org. Lett. 2000, 4, 433. (d) Satyanarayana, G.; Maier, M. E. J. Org.
Chem. 2008, 73, 5410. (e) Kim, H. S.; Gowrisankar, S.; Kim, S. H.;
Kim, J. N. Tetrahedron Lett. 2008, 49, 3858. (f) Kim, H. S.; Lee, H. S.;
Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2009, 50, 3154.
(7) (a) Kim, J.; Chang, S. J. Am. Chem. Soc. 2010, 132, 10272.
(b) Kim, J.; Choi, J.; Shin, K.; Chang, S. J. Am. Chem. Soc. 2012, 134,
2528. (c) Wang, Z.; Chang, S. Org. Lett. 2013, 15, 1990. (d) Pawar, A.
B.; Chang, S. Chem. Commun. 2014, 50, 448.
(8) Ding, S.; Jiao, N. J. Am. Chem. Soc. 2011, 133, 12374.
(9) Nandra, G. S.; Pang, P. S.; Porter, M. J.; Elliott, J. M. Org. Lett.
2005, 7, 3453.
(10) Hoorneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.;
Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972.
(11) For reviews, see: (a) Chattopadhyay, B.; Gevorgyan, V. Angew.
Chem., Int. Ed. 2012, 51, 862. (b) Gulevich, A. V.; Gevorgyan, V.
Angew. Chem., Int. Ed. 2013, 52, 1371.
2211
dx.doi.org/10.1021/ol500723s | Org. Lett. 2014, 16, 2208−2211