6210
Y. Wu et al. / Tetrahedron 65 (2009) 6204–6210
3. As representative examples using oxazolidinones as intermediates, see: (a)
Makhtar, T. M.; Wright, G. D. Chem. Rev. 2005, 105, 529–542; (b) Aurelio, L.;
Brownlee, R. T. C.; Hughus, A. B. Chem. Rev. 2004, 104, 5823–5846; (c) Shi, Z. D.;
Liu, H. P.; Zhang, M. C.; Yang, D. J.; Burke, T. R., Jr. Synth. Commun. 2004, 34, 3883–
3889; (d) Andreou, T.; Costa, A. M.; Esteban, L.; Gonzalez, L.; Mas, G.; Vilarrasa, J.
Org. Lett. 2005, 7, 4083–4086; (e) Watson, R. J.; Batty, D.; Baxter, A. D.; Hannah, D.
R.; Owen, D. A.; Montana, J. G. Tetrahedron Lett. 2002, 43, 683–685.
4. (a) Ben-Ishai, D. J. Am. Chem. Soc. 1956, 78, 4962–4965; (b) Vo, L.; Ciula, J.;
Gooding, O. W. Org. Process Res. Dev. 2003, 7, 514–520; (c) Close, W. J. J. Am.
Chem. Soc. 1951, 73, 95–98; (d) Lynn, J. W. U.S. Patent 2,975,187, 1961; (e) Steele,
A. B. U.S. Patent 2,868,801, 1959; (f) Yoshida, T.; Kambe, N.; Ogawa, A.; Sonoda,
N. Phosphorus Sulfur Silicon Relat. Elem. 1988, 38, 137–148.
74.5, 125.5, 129.5, 136.0, 138.6, 157.3; ESI-MS calcd for C16H21NO2
259.16, found 260.02 (MþH)þ, 799.55 (3MþNa)þ. HRMS calcd for
C16H21NO2 (MþH)þ 260.1645, found 260.1652.
4.5.11. 5-(4-Chlorophenyl)-3-cyclohexyloxazolidin-2-one (2j)
White crystals, mp 94–96 ꢀC. 1H NMR (300 MHz, CDCl3)
d 1.05–
1.83 (m, 10H), 3.34 (t, 3J¼8.0 Hz, 1H), 3.69–3.76 (m, 1H), 3.89 (t,
3J¼8.7 Hz, 1H), 5.44 (t, 3J¼8.0 Hz, 1H), 7.27–7.38 (m, 4H); 13C NMR
(75 MHz, CDCl3) d 25.2, 25.3, 30.0, 30.4, 48.2, 52.6, 73.8,126.8,129.0,
134.5, 137.6, 156.8; APCI-MS calcd for C15H18ClNO2 279.10, found
839.62 (3MþH)þ, 859.60 (3MþNa)þ. HRMS calcd for C15H18ClNO2
(MþH)þ 280.1099, found 280.1101.
5. (a) Costa, M.; Chiusoli, G. P.; Rizzardi, M. Chem. Commun. 1996, 1699–1700; (b)
Shi, M.; Shen, Y. M. J. Org. Chem. 2002, 67, 16–21; (c) Feroci, M.; Orsini, M.;
Sotgiu, G.; Rossi, L.; Inesi, A. J. Org. Chem. 2005, 70, 7795–7798; (d) Gu, Y. L.;
Zhang, Q. H.; Duan, Z. Y.; Zhang, J.; Zhang, S. G.; Deng, Y. Q. J. Org. Chem. 2005,
70, 7376–7380.
6. The cycloaddition of CO2 and aziridines to give oxazolidinones, see: (a) Miller,
A. W.; Nguyen, S. T. Org. Lett. 2004, 6, 2301–2304; (b) Shen, Y. M.; Duan, W. L.;
Shi, M. Eur. J. Org. Chem. 2004, 14, 3080–3089; (c) Hancock, M. T.; Pinhas, A. R.
Tetrahedron Lett. 2003, 44, 5457–5460; (d) Sudo, A.; Morioka, Y.; Sanda, F.;
Endo, T. Tetrahedron Lett. 2004, 45, 1363–1365; (e) Sudo, A.; Morioka, Y.; Koi-
zumi, E.; Sanda, F.; Endo, T. Tetrahedron Lett. 2003, 44, 7889–7891; (f) Kawa-
nami, H.; Ikushima, Y. Tetrahedron Lett. 2002, 43, 3841–3844; (g) Kawanami, H.;
Matsumoto, H.; Ikushima, Y. Chem. Lett. 2005, 34, 60–61; (h) Tascedda, P.;
Dunach, E. Chem. Commun. 2000, 449–450; (i) Ihata, O.; Kayaki, Y.; Ikariya, T.
Angew. Chem., Int. Ed. 2004, 43, 717–719; (j) Ihata, O.; Kayaki, Y. Macromolecules
2005, 38, 6429–6434; (k) Du, Y.; Wu, Y.; Liu, A. H.; He, L. N. J. Org. Chem. 2008,
73, 4709–4712.
4.5.12. 3-Benzyl-4-(cholomethyl)oxazolidin-2-one (3l)
Colorless liquid. 1H NMR (300 MHz, CDCl3)
d 3.52 (d, 2H), 3.86–
3.94 (m, 1H), 4.17 (d, 2J¼15.3 Hz, 1H), 4.24 (t, 3J¼8.9 Hz, 1H), 4.23 (q,
3J¼9.0 Hz, 3J¼5.3 Hz, 1H), 4.82 (d, 2J¼15.3 Hz, 1H), 7.29–7.37 (m,
5H); 13C NMR (75 MHz, CDCl3)
d 43.4, 46.5, 54.8, 65.3, 128.1, 128.3,
129.0, 135.5, 158.0; ESI-MS calcd for C11H12NO2Cl 225.67, found
472.90 (2MþNa)þ. HRMS calcd for C11H12NO2Cl (MþNa)þ
248.0449, found 248.0454.
7. (a) Shen, Y. M.; Duan, W. L.; Shi, M. J. Org. Chem. 2003, 68, 1559–1562; (b) Shi,
M.; Shen, Y. M. Curr. Org. Chem. 2003, 7, 737–745.
8. Farnworth, F.; Jones, S. L.; McAlpine, I. Speciality Inorganic Chemicals Special
Publication No. 40; Royal Society of Chemistry: London, 1980.
9. Shirini, F.; Zolfigol, M. A.; Mollarazi, E. Synth. Commun. 2005, 35, 1541–1545.
10. Shi, M.; Cui, S. C.; Yin, W. P. Eur. J. Org. Chem. 2005, 11, 2379–2384.
11. Ghosh, R.; Maiti, S.; Chakraborty, A. Tetrahedron Lett. 2005, 46, 147–151.
12. (a) Mantri, K.; Komura, K.; Sugi, Y. Green Chem. 2005, 7, 677–782; (b) Nakayama,
M.; Sato, A.; Ishihara, K.; Yamamoto, H. Adv. Synth. Catal. 2004, 346, 1275–1279;
(c) Sun, H. B.; Hua, R. M.; Yin, Y. W. Molecules 2006, 11, 263–271.
13. Firouzabadi, H.; Iranpoor, N.; Jafarpour, M.; Ghaderi, A. J. Mol. Catal. A: Chem.
2006, 252, 150–155.
14. Rodriguez-Dominguez, J. C.; Bernardi, D.; Kirsch, G. Tetrahedron Lett. 2007, 48,
5777–5780.
15. Eftekhari-Sis, B.; Abdollahifar, A.; Hashemi, M. M.; Zirak, M. Eur. J. Org. Chem.
2006, 22, 5152–5157.
16. (a) Moghaddam, F. M.; Ismaili, H.; Bardajee, G. R. Heteroat. Chem. 2006, 17, 136–
141; (b) Mohammad poor-Baltork, I.; Khosropour, A. R.; Hojati, S. F. Catal.
Commun. 2007, 8, 200–204; (c) Mohammadpoor-Baltork, I.; Khosropour, A. R.;
Hojati, S. F. Catal. Commun. 2007, 8, 1865–1870; (d) Zhang, Z. H.; Yin, L.; Wang,
Y. M. Catal. Commun. 2007, 8, 1126–1131.
4.5.13. 1,4-Diethyl-2,5-diphenyl-piperazine (4a)
White crystals, mp 116–119 ꢀC. 1H NMR (400 MHz, CDCl3)
d 0.91
(t, 3J¼7.2 Hz, 6H), 1.99–2.05 (m, 2H), 2.30 (t, 3J¼10.8 Hz, 2H), 2.54–
2.62 (m, 2H), 3.08 (dd, 2J¼11.6 Hz, 3J¼2.4 Hz, 2H), 3.45 (dd,
3J¼2.0 Hz, 2J¼12.0 Hz, 2H), 7.29–7.43 (m, 10H); LC–MS calcd for
C20H26N2 294.21, found 295.35 (MþH)þ. HRMS calcd for C20H26N2
(MþH)þ 295.2169, found 295.2164.
4.5.14. 1,4-Diethyl-2,3-diphenyl-piperazine (5a)
Colorless liquid. 1H NMR (400 MHz, CDCl3)
d
1.01 (t, 3J¼7.2 Hz,
6H), 2.17–2.26 (m, 2H), 2.33–2.26 (m, 2H), 2.65–2.69 (m, 2H), 2.95–
2.99 (q, 3J¼6.0 Hz, 2H), 3.73 (s, 2H), 7.27–7.38 (m, 6H), 7.69–7.71 (d,
3J¼7.2 Hz, 4H); LC–MS calcd for C20H26N2 294.21, found 295.31
(MþH)þ. HRMS calcd for C20H26N2 (MþH)þ 295.2169, found
295.2167.
17. Ghosh, R.; Maiti, S.; Chakraborty, A.; Chakraborty, S.; Mukherjee, A. K. Tetra-
hedron 2006, 62, 4059–4064.
Acknowledgements
18. Zhang, Z. H.; Li, T. S.; Li, J. J. Catal. Commun. 2007, 8, 1615–1620.
19. Bhagat, S.; Chakraborti, A. K. J. Org. Chem. 2008, 73, 6029–6032.
20. Shen, W.; Wang, L. M.; Feng, J. J.; Tian, H. Tetrahedron Lett. 2008, 49, 4047–4049.
21. Xie, Y.; Zhang, Z. F.; Jiang, T.; He, J. L.; Han, B. X.; Wu, T. B.; Ding, K. L. Angew.
Chem. Int. Ed. 2007, 46, 7255–7258.
22. (a) Benaliouche, F.; Boucheffa, Y.; Ayrault, P.; Mignard, S.; Magnoux, P. Micropor.
Mesopor. Mat. 2008, 111, 80–88; (b) Oliveira, A. C.; Essayem, N.; Tuel, A.; Clacens,
J.-M.; Taarit, Y. B. J. Mol. Catal. A: Chem. 2008, 293, 31–38.
Financial support from the National Natural Science Foundation
of China (Grant Nos. 20421202, 20672054, and 20872073) and the
111 project (B06005) and Tianjin Natural Science Foundation is
gratefully acknowledged. We also thank the reviewers for their
valuable suggestions regarding revision.
23. The amount of Lewis acid sites is defined as the corresponding peak area di-
vided by the sample weight.
Supplementary data
24. Based on the BET measurement, pore channel was not found in the fresh
catalyst; while the recovered one could show a small pore structure with the
Supplementary data associated with this article can be found in
surface area of 3 m2 gꢁ1), pore volume of 0.0368 cm3 ꢁ1, and average pore
g
diameter (24.79 nm), being well agreement with the results of catalytic
activity.
25. (S) -1c was synthesized according to a literature procedure: Calet, S.; Urso, F.;
Alper, H. J. Am. Chem. Soc. 1989, 111, 931–934 The reaction of (S)-1c with CO2 in
the presence of 5 mol % catalyst affords (S)-2c in 99.8% ee with 86% yield and
(S)-3c in 99.9% ee with 7% yield.
26. The zirconyl group consists of a complex cation in which four zirconium atoms
are at the corners of a slightly distorted square, and are linked along each edge
of the square by two OH groups. Each zirconium is bound to four water mole-
cules. There are no zirconium–halogen bonds in this structure. Clearfield, A.;
Vaughan, P. A. Acta Crystallogr. 1956, 9, 555–558.
27. (a) Capriati, V.; Florio, S.; Luisi, R.; Musio, B. Org. Lett. 2005, 7, 3749–3752; (b)
Chakraborti, A. K.; Rudrawar, S.; Kondaskar, A. Eur. J. Org. Chem. 2004, 17, 3597–
3600; (c) Chamchaang, W.; Pinhas, A. R. J. Org. Chem. 1990, 55, 2531–2533; (d)
Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc. 1989, 111, 931–934.
28. (a) Bergmann, E. D.; Goldschomidt, Z. J. Med. Chem. 1968, 11, 1121–1125; (b)
Herweh, J. E. J. Org. Chem. 1968, 33, 4029–4033; (c) Das, J. Synth. Commun. 1988,
18, 907–915; (d) Orito, K.; Miyazawa, M.; Nakamura, T.; Horibata, A.; Ushito, H.;
Nagasaki, H.; Yuguchi, M.; Yamashitan, S.; Yamazaki, T.; Tokuda, M. J. Org. Chem.
2006, 71, 5951–5958.
References and notes
1. As representative examples see: (a) Barbachyn, M. R.; Ford, C. W. Angew. Chem.,
Int. Ed. 2003, 42, 2010–2023; (b) Colca, J. R.; McDonald, W. G.; Waldon, D. J.;
Thomasco, L. M.; Gadwood, R. C.; Lund, E. T.; Cavey, G. S.; Mathews, W. R.;
Adams, L. D.; Cecil, E. T.; Pearson, J. D.; Bock, J. H.; Mott, J. E.; Shinabarger, D. L.;
Xiong, L.; Mankin, A. S. J. Biol. Chem. 2003, 278, 21972–21979; (c) Hoellman, D.
B.; Lin, G.; Ednie, L. M.; Rattan, A.; Jacobs, M. R.; Appelbaum, P. C. Antimicrob.
Agents Chemother. 2003, 47, 1148–1150; (d) Rubinstein, E.; Isturiz, R.; Standiford,
H. C.; Smith, L. G.; Oliphant, T. H.; Cammarata, S.; Hafkin, B.; Le, V.; Remington, J.
Antimicrob. Agents Chemother. 2003, 47, 1824–1831; (e) Fluit, A. C.; Schmitz, F. J.;
Verhoef, J.; Milatovic, D. J. Antimicrob. Chemother. 2002, 50, 271–276.
2. As representative examples using oxazolidinones as chiral auxiliaries, see: (a)
Prashad, M.; Liu, Y. G.; Kim, H. Y.; Repic, O.; Blacklock, T. J. Tetrahedron: Asym-
metry 1999, 10, 3479–3482; (b) Gawley, R. E.; Campagna, S. A.; Santiago, M.;
Ren, T. Tetrahedron: Asymmetry 2002, 13, 29–36; (c) Phoon, C. W.; Abell, C.
Tetrahedron Lett. 1998, 39, 2655–2658.