554
J. L. Wood et al.
LETTER
steps on the boron center. These steps are promoted by the
imidazole/imidazolium system acting as a acido-basic
buffer and by imidazole-stabilizing intermediate by form-
ing ate complexes. In most cases, a mixture of acetonitrile
and water turned out to be the optimal solvent system
leading to compounds in good yields at room temperature.
Table 3 Catalytic System Optimization: Diaminoborane Formation
NH2 NH2
B(OH)2
FeCl3, imidazole
solvent, temp
HN
B
+
N
H
Entry
FeCl3
(mol%)
Imidazole Temp
Time
(h)
Yield
(%)a
Acknowledgment
(equiv)
(°C)
L. M. and J. L.W. thank the Région d’aquitaine for funding. We gra-
tefully thank M. N. Rager of the Ecole Nationale Supérieure de Chi-
mie de Paris for NMR analyses. This work has been funded by the
CNRS, Université de Bordeaux 1 and Conseil Régional d’Aqui-
taine.
1
2
3
4
5
5
5
5
3
–
3
3
80
80
80
r.t.
2
2
1
2
89
57
89
93
Supporting Information for this article is available online at
o
nSupprigI
o
tnnofrmat
a Isolated yield as referred to analytically pure material.
References
NH2 NH2
(1) Chow, W. K.; Yuen, O. Y.; Choy, P. Y.; So, C. M.; Lau, C.
P.; Wong, W. T.; Kwong, F. Y. RSC Adv. 2013, 3, 12518.
(2) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
(3) (a) Noguchi, H.; Shioda, T.; Chou, C.-M.; Suginome, M.
Org. Lett. 2008, 10, 377. (b) Noguchi, H.; Hojo, K.;
Suginome, M. J. Am. Chem. Soc. 2007, 129, 758.
(4) Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf,
M. R. J. Org. Chem. 1995, 60, 3020.
FeCl3 (5 mol%)
imidazole (3 equiv)
HN
B
RB(OH)2
+
H2O–MeCN (1:4)
r.t., 2–6 h
R
N
H
B(dan)
B(dan)
B(dan)
93%
t-Bu
94%
95%
(5) Lennox, A. J. J.; Lloyd-Jones, G. C. Angew. Chem. Int. Ed.
2012, 51, 9385.
B(dan)
B(dan)
(6) (a) Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y.
Synthesis 2000, 778. (b) Billingsley, K. L.; Buchwald, S. L.
J. Org. Chem. 2008, 73, 5589. (c) Marciasini, L.; Richy, N.;
Vaultier, M.; Pucheault, M. Chem. Comm. 2012, 48, 1553.
(d) Ma, Y.; Song, C.; Jiang, W.; Xue, G.; Cannon, J. F.;
Wang, X.; Andrus, M. B. Org. Lett. 2003, 5, 4635.
(e) Willis, D. M.; Strongin, R. M. Tetrahedron Lett. 2000,
41, 8683. (f) Wang, L.; Li, J.; Cui, X.; Wu, Y.; Zhu, Z.; Wu,
Y. Adv. Synth. Catal. 2010, 352, 2002. (g) Tang, W.;
Keshipeddy, S.; Zhang, Y.; Wei, X.; Savoie, J.; Patel, N. D.;
Yee, N. K.; Senanayake, C. H. Org. Lett. 2011, 13, 1366.
(h) PraveenGanesh, N.; Demory, E.; Gamon, C.; Blandin,
V.; Chavant, P. Y. Synlett 2010, 2403. (i) Lu, J.; Guan, Z.-
Z.; Gao, J.-W.; Zhang, Z.-H. Appl. Organomet. Chem. 2011,
25, 537. (j) Kawamorita, S.; Ohmiya, H.; Iwai, T.;
Sawamura, M. Angew. Chem. Int. Ed. 2011, 50, 8363.
(k) Billingsley, K. L.; Buchwald, S. L. J. Org. Chem. 2008,
73, 5589. (l) Broutin, P.-E.; Čerňa, I.; Campaniello, M.;
Leroux, F.; Colobert, F. Org. Lett. 2004, 6, 4419.
(m) Praveen Ganesh, N.; Chavant, P. Y. Eur. J. Org. Chem.
2008, 4690. (n) Euzenat, L.; Horhant, D.; Ribourdouille, Y.;
Duriez, C.; Alcaraz, G.; Vaultier, M. Chem. Commun. 2003,
2280. (o) Euzenat, L.; Horhant, D.; Brielles, C.; Alcaraz, G.;
Vaultier, M. J. Organomet. Chem. 2005, 690, 2721.
(p) Marciasini, L. D.; Richy, N.; Vaultier, M.; Pucheault, M.
Adv. Synth. Catal. 2013, 355, 1083. (q) Pucheault, M.;
Marciasini, L.; Vaultier, M. EP 123058547, 2012.
(7) Yuen, A. K. L.; Hutton, C. A. Tetrahedron Lett. 2005, 46,
7899.
Cl
O
87%
94%
B(dan)
B(dan)
O2N
99%
94%
NH2 NH2
FeCl3 (5 mol%),
imidazole (3 equiv)
HN
B
PhB(pin)
+
H2O-MeCN (1:4)
1 h, r.t.
Ph
N
H
Scheme 3 Conversion of boronic aicds into diazaborolanes
Overall we developed a simple cost effective but yet effi-
cient method to interconvert boron substituents, that is,
fluorine, alkoxy, and amino. The iron(III) chloride–imid-
azole–water system displayed a unexpected versatility to
transform aryl boronic derivatives into one another. If po-
tassium 4-methoxyphenyltrifluoroborate and FeCl3 in a
1:1 mixture led to the formation of the boronic acid in
CD3CN, no change in 11B NMR was witnessed when add-
ing FeCl3 to boronic acid. Imidazole reacts with the bo-
ronic acid (δ = 28 ppm) by making a weak complex (δ =
20.3 ppm) but without forming the borate. Imidazole and
iron chloride unsurprisingly form an iron–imidazole com-
plex as witnessed by a weak downfield shift of imidazole
protons upon complexation. The mechanism is thought to
proceed via classical activation by this iron complex as
Lewis acids, followed by sequential addition–elimination
(8) Inglis, S. R.; Woon, E. C. Y.; Thompson, A. L.; Schofield,
C. J. J. Org. Chem. 2010, 75, 468.
(9) (a) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275.
(b) Darses, S.; Genêt, J.-P. Chem. Rev. 2007, 108, 288.
(c) Stefani, H. A.; Cella, R.; Vieira, A. S. Tetrahedron 2007,
63, 3623.
Synlett 2014, 25, 551–555
© Georg Thieme Verlag Stuttgart · New York