RSC Advances
Communication
4.43 (s, 1H), 4.27 (s, 1H), 4.16 (m, 1H), 3.90 (m, 1H), 3.80 (m,
2H), 3.73 (m, 2H), 3.67 (m, 2H), 2.60 (ddd, J ¼ 14.5, 4.2 and 3.7
Hz, 1H), 2.30–2.17 (m, 2H), 2.05 (ddd, J ¼ 14.5, 10.2 and 3.6 Hz,
1H); 13C NMR (100.6 MHz, CDCl3) d 138.3–127.7, 93.4, 84.6,
79.2–69.5, 37.0, 33.1, 29.6, 26.8.
Acknowledgements
´
We thank the Ministerio de Economıa y Competitividad, Spain
(CTQ2011-22872BQU) for generous nancial support. We also
´
´
thank Dr I. Marın for preliminary results and Ms. M. Salvado,
´
Ms. E. Breso, Dr A. Lishchynskyi and the ICIQ MS unit for
technical assistance. O.B. thanks the Ministerio de Ciencia e
Phenyl 4,6-di-O-benzyl-2,3-dideoxy-1-thio-a/b-D-erythro-
hexopyranoside (11)
´
Innovacion, Spain (Juan de la Cierva Fellowship) and the
European Commission (Marie Curie Career Integration Grant).
NBS (63.5 mg, 0.36 mmol) was added to a solution of 3 (1 : 1
ꢀ
Z/E) (100 mg, 0.23 mmol) in dry CH3CN (3.4 mL) at ꢁ30 C
Notes and references
and stirred for 2.5 h. The mixture was diluted with CH2Cl2
and washed with saturated aqueous Na2S2O3. The combined
organic layers were dried over MgSO4, ltered and concen-
trated. The residue was ltered through a short silica plug
(from hexane to 1 : 3 EtOAc–hexane) and the solvent evapo-
rated to afford phenyl 4,6-di-O-benzyl-2,3-dideoxy-2-bromo-1-
thio-a/b-D-arabino/ribo-hexopyranoside 10b (53 mg, 45%) as a
brownish syrup. The isolated product decomposed on
standing and was therefore quickly subjected to the next
reaction. A mixture of 10b (40 mg, 0.08 mmol) and NaOAc (9.6
mg, 0.12 mmol) were dissolved in THF (0.5 mL) and acetic
acid (7 mL) at 0 ꢀC. Zn/Cu couple (53 mg) was then added and
the reaction was le to stir at the same temperature for 1.5 h.
The mixture was then diluted with CH2Cl2 and washed with
saturated aqueous NaHCO3. The combined organic layers
were dried over MgSO4, ltered and concentrated. The
residue was puried by radial chromatography (from hexane
to 1 : 5 EtOAc–hexane) to afford 11 (31 mg, 88%) as a col-
ourless syrup. 1H NMR (400 MHz, CDCl3) d 7.61–7.22 (m,
15H), 4.71 (d, J ¼ 10.4 Hz, 1H), 4.61–4.40 (m, 4H), 3.80–3.68
(m, 4H), 3.58 (ddd, J ¼ 9.6, 4.8 and 2.0 Hz, 1H), 3.47 (ddd, J ¼
9.6, 10.4 and 4.4 Hz, 1H), 2.88 (ddd, J ¼ 12.4, 4.8 and 4.4 Hz,
1H), 2.03 (ddd, J ¼ 12.4, 11.2 and 10.4 Hz, 1H); 13C NMR
(100.6 MHz, CDCl3) d 133.4–127.8, 89.5, 82.0, 73.6, 72.7, 71.7,
1 R. M. de Lederkremer and C. Marino, in Adv. Carbohydr.
Chem. Biochem., ed. D. Horton, Elsevier, Amsterdam, 2007,
vol. 61, pp. 143–216.
2 S. Kunimoto, J. Lu, H. Esumi, Y. Yamazaki, N. Kinoshita,
Y. Honma, M. Hamada, M. Ohsono, M. Ishizuka and
T. Takeuchi, J. Antibiot., 2003, 56, 1004.
3 B. Ostash, A. Korynevska, R. Stoika and V. Fedorenko, Mini-
Rev. Med. Chem., 2009, 9, 1040.
4 A. Luzhetskyy, A. Vente and A. Bechthold, Mol. BioSyst., 2005,
1, 117.
5 C. L. Stevens, K. Nagarajan and T. H. Haskell, J. Org. Chem.,
1962, 27, 2991.
6 A. Eschenmoser, Angew. Chem., Int. Ed., 2011, 50, 12412 and
references therein.
7 C. L. Stevens, P. Blumbergs and D. L. Wood, J. Am. Chem.
Soc., 1964, 86, 3592.
8 (a) R. S. Babu, Q. Chen, S.-W. Kang, M. Zhou and
G. A. O'Doherty, J. Am. Chem. Soc., 2012, 134, 11952 and
´
references therein; (b) I. Cobo, M. I. Matheu, S. Castillon,
O. Boutureira and B. G. Davis, Org. Lett., 2012, 14, 1728; (c)
M. H. Haukaas and G. A. O'Doherty, Org. Lett., 2002, 4, 1771.
´
9 A. Aljarilla, J. C. Lopez and J. Plumet, Eur. J. Org. Chem., 2010,
6123.
69.3, 45.7, 41.9. Spectroscopic data are consistent with those 10 (a) C. Samojłowicz and K. Grela, ARKIVOC, 2011, 71; (b)
reported.30
P. van de Weghe, P. Bisseret, N. Blanchard and
J. Eustache, J. Organomet. Chem., 2006, 691, 5078.
11 Y. A. Lin and B. G. Davis, Beilstein J. Org. Chem., 2010, 6,
1219.
1,5-Anhydro-4,6-di-O-benzyl-D-erythro-hex-1-enitol (12)
A mixture of 10a (130 mg, 0.24 mmol) and NaOAc (27 mg, 0.33 12 (a) Y. A. Lin, O. Boutureira, L. Lercher, B. Bhushan,
mmol) were dissolved in THF (0.5 mL) and acetic acid (20 mL)
at 0 C. Zn/Cu couple (160 mg) was then added and the reac-
tion mixture was warmed to 15 ꢀC and stirred for 4 h. The
mixture was then diluted with CH2Cl2 and washed with satu-
rated aqueous NaHCO3. The combined organic layers were
dried over MgSO4, ltered and concentrated. The residue was
R. S. Paton and B. G. Davis, J. Am. Chem. Soc., 2013, 135,
12156; (b) Y. A. Lin, J. M. Chalker and B. G. Davis, J. Am.
Chem. Soc., 2010, 132, 16805; (c) J. M. Chalker, Y. A. Lin,
O. Boutureira and B. G. Davis, Chem. Commun., 2009, 3714;
(d) Y. A. Lin, J. M. Chalker, M. Floyd, G. J. L. Bernardes
and B. G. Davis, J. Am. Chem. Soc., 2008, 130, 9642.
ꢀ
puried by radial chromatography (from hexane to 1 : 4 13 S. J. Meek, R. V. O'Brien, J. Llaveria, R. R. Schrock and
EtOAc–hexane) to afford 12 (50 mg, 71%) as a colourless syrup. A. H. Hoveyda, Nature, 2011, 471, 461.
Rf (1 : 3 EtOAc–hexane): 0.40; 1H NMR (400 MHz, CDCl3) d 14 (a) J. Carreras, A. Avenoza, J. H. Busto and J. M. Peregrina,
7.36–7.21 (m, 10H), 6.36 (ddd, J ¼ 6.4, 2.4 and 1.6 Hz, 1H), 4.63
J. Org. Chem., 2009, 74, 1736; (b) Z. Liu and J. D. Rainier,
Org. Lett., 2005, 7, 131 and references therein.
(ddd, J ¼ 6.4, 5.2 and 2.6 Hz, 1H), 4.62–4.50 (m, 4H), 3.90 (dd, J
¼ 8.0 and 4.0 Hz, 1H), 3.79 (m, 3H), 2.38 (dddd, J ¼ 16.4, 6.0, 15 K. F. W. Hekking, F. L. van Del and F. P. J. T. Rutjes,
5.2 and 1.6 Hz, 1H), 2.08 (dddd, J ¼ 16.4, 8.4, 2.6 and 2.4 Hz,
Tetrahedron, 2003, 59, 6751.
1H); 13C NMR (100.6 MHz, CDCl3) d 143.3, 138.4–127.8, 97.8, 16 (a) C. Fischmeister and C. Bruneau, Beilstein J. Org. Chem.,
76.9, 73.7, 71.3, 70.7, 69.2, 26.7. Spectroscopic data are
consistent with those reported.30
2011, 7, 156; (b) A. J. Giessert and S. T. Diver, Chem. Rev.,
2004, 104, 1317.
19798 | RSC Adv., 2014, 4, 19794–19799
This journal is © The Royal Society of Chemistry 2014