The Journal of Organic Chemistry
Article
102, 3278. (d) Eaton, D. F. J. Am. Chem. Soc. 1980, 102, 3280.
(e) Eaton, D. F. J. Am. Chem. Soc. 1981, 103, 7235. (f) Eaton, D. F.
Pure Appl. Chem. 1984, 56, 1191. (g) Fukuzumi, S.; Kuroda, S.;
Tanaka, T. J. Chem. Soc., Chem. Commun. 1986, 1553. (h) Maruyama,
K.; Imahori, H.; Osuka, A.; Takuwa, A.; Tagawa, H. Chem. Lett. 1986,
1719. (i) Takuwa, A.; Tagawa, H.; Iwamoto, H.; Soga, O.; Maruyama,
K. Chem. Lett. 1987, 1091. (j) Kyushin, S.; Nakadaira, Y.; Ohashi, M.
Chem. Lett. 1990, 19, 2191. (k) Kyushin, S.; Masuda, Y.; Matsushita,
K.; Nakadaira, Y.; Ohashi, M. Tetrahedron Lett. 1990, 31, 6395.
(l) Mizuno, K.; Nakanishi, K.; Tachibana, A.; Otsuji, Y. J. Chem. Soc.,
Chem. Commun. 1991, 344. (m) Yoshida, J.-I.; Ishichi, Y.; Isoe, S. J.
Am. Chem. Soc. 1992, 114, 7594. (n) Nakanishi, K.; Mizuno, K.; Otsuji,
Y. Bull. Chem. Soc. Jpn. 1993, 66, 2371. (o) Kyushin, S.; Otani, S.;
Nakadaira, Y.; Ohashi, M. Chem. Lett. 1995, 29. (p) Yoshida, J.-I.;
Izawa, M. J. Am. Chem. Soc. 1997, 119, 9361.
10−5 cm2 s−1, where the diffusion coefficient D1+2 is calculated from the
Stokes−Einstein equation (D1+2 = D1 + D2 = RT/6πηr1N + RT/
6πηr2N) with η = 0.35 cP for CH3CN and r1 = r2 = 3 Å. On the basis
of the Eigen equation,18c k−d is calculated to be ∼3.4 × 1010 M−1 s−1
(k−d = 3000kd/4π(r1+2)3N). (b) Smoluchowski, M. v. Z. Phys. Chem.
1917, 92, 129. (c) Eigen, M. Z. Phys. Chem. 1954, 1, 176.
(19) (a) Gardner, H. C.; Kochi, J. K. J. Am. Chem. Soc. 1976, 98,
2460. (b) Fukuzumi, S.; Mochida, K.; Kochi, J. K. J. Am. Chem. Soc.
1979, 101, 5961. (c) Fukuzumi, S.; Wong, C. L.; Kochi, J. K. J. Am.
Chem. Soc. 1980, 102, 2928. (d) Fukuzumi, S.; Kochi, J. K. J. Phys.
Chem. 1980, 84, 2254. (e) Kochi, J. K. Angew. Chem., Int. Ed. Engl.
1988, 27, 1227. (f) Lucke, A. J.; Young, D. J. Tetrahedron Lett. 1991,
32, 807.
(20) The reaction of phenyltrimethylstannane (1) with trityl cation
has been shown to lead to exclusive fragmentation of the phenyl
group. Although an electron transfer mechanism has been proposed
for this reaction, a kinetic competence test analogous to that for the
reaction of 1 with 2 demonstrates that a polar mechanism is more
plausible. (a) Kashin, A. N.; Bumagin, N. A.; Beletskaya, I. P.; Reutov,
O. A. Zh. Org. Khim. 1978, 14, 1141. (b) Kashin, A. N.; Bumagin, N.
A.; Beletskaya, I. P.; Reutov, O. A. Zh. Org. Khim. 1978, 14, 1345.
(c) Kashin, A. N.; Bumagin, N. A.; Beletskaya, I. P.; Reutov, O. A.
Dokl. Akad. Nauk SSSR 1978, 240, 1364. (d) Kashin, A. N.; Bumagin,
N. A.; Beletskaya, I. P.; Reutov, O. A. J. Organomet. Chem. 1979, 171,
321.
(21) (a) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R.
K.; Timmers, F. J. Organometallics 1996, 15, 1518. (b) Alaimo, P. J.;
Peters, D. W.; Arnold, J.; Bergman, R. G. J. Chem. Educ. 2001, 78, 64.
(22) van Klink, G. P. M.; de Boer, H. J. R.; Schat, G.; Akkerman, O.
S.; Bickelhaupt, F.; Spek, A. L. Organometallics 2002, 21, 2119.
(23) Thomas, J. C.; Peters, J. C. Inorg. Chem. 2003, 42, 5055.
(24) Banwell, M. G.; Cameron, J. M.; Collis, M. P.; Crisp, G. T.;
Gable, R. w.; Hamel, E.; Lambert, J. N.; Mackay, M. F.; Reum, M. E.;
Scoble, J. A. Aust. J. Chem. 1991, 44, 705.
(25) (a) Kozyrod, R. P.; Morgan, J.; Pinhey, J. T. Aust. J. Chem. 1985,
38, 1147. (b) Suginome, H.; Ishikawa, M.; Yorita, K.; Shimoyama, N.;
Sasaki, T.; Orito, K. J. Org. Chem. 1995, 60, 3052.
(26) (a) Zimmer, H.; Hechenbleikner, I.; Homberg, O. A.; Danzik,
M. J. Org. Chem. 1964, 29, 2632. (b) Zimmer, H.; Homberg, O. A.;
Jayawant, M. J. Org. Chem. 1966, 31, 3857.
(3) Lochynski, S.; Boduszek, B.; Shine, H. J. J. Org. Chem. 1991, 56,
914.
(4) (a) Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.; Gould, I. R.;
Todd, W. P.; Mattes, S. J. Am. Chem. Soc. 1989, 111, 8973.
(b) Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.; Gould, I. R.;
Todd, W. P. Mol. Cryst. Liq. Cryst. 1991, 194, 151. (c) Todd, W. P.;
Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.; Gould, I. R. Tetrahedron
Lett. 1993, 34, 2863. (d) Zhang, X.; Yeh, S.-R.; Hong, S.; Freccero, M.;
Albini, A.; Falvey, D. F.; Mariano, P. S. J. Am. Chem. Soc. 1994, 116,
4211. (e) Schmittel, M.; Keller, M.; Burghart, A. J. Chem. Soc., Perkin
Trans. 2 1995, 2327. (f) Dockery, K. P.; Dinnocenzo, J. P.; Farid, S.;
Goodman, J. L.; Gould, I. R.; Todd, W. P. J. Am. Chem. Soc. 1997, 119,
1876. (g) de Lijser, H. J. P.; Snelgrove, D. W.; Dinnocenzo, J. P. J. Am.
Chem. Soc. 2001, 123, 9698. (h) Gould, I. R.; Godleski, S. A.; Zielinski,
P. A.; Farid, S. Can. J. Chem. 2003, 81, 777.
(5) Dockery, K. P.; Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.;
Gould, I. R.; Todd, W. P. J. Am. Chem. Soc. 1997, 119, 1876.
(6) Codonors were necessary for generation of the stannane cation
radicals because direct interception of the NMQ excited state by the
stannanes results in rapid intersystem crossing to primarily form
3NMQ*, with little or no subsequent cation radical formation. This
also applied to the use of TCB as a photooxidant.
(7) Eberson, L.; Hartshorn, M. P.; Persson, O. J. Chem. Soc., Perkin
Trans. 2 1995, 1735.
(8) Alfassi, Z. B.; Khaikin, G. I.; Neta, P. J. Phys. Chem. 1995, 99, 265.
(9) Merkel, P. B.; Luo, P.; Dinnocenzo, J. P.; Farid, S. J. Org. Chem.
2009, 74, 5163.
(10) Fang, X.; Mertens, R.; von Sonntag, C. J. Chem. Soc., Perkin
Trans. 2 1995, 1033.
(11) Debroy, P.; Lindeman, S. V.; Rathore, R. Org. Lett. 2007, 9,
4091.
(12) Luo, P.; Feinberg, A. M.; Guirado, G.; Farid, S.; Dinnocenzo, J.
(27) Gotze, H. J. Chem. Ber. 1971, 104, 3719.
̈
(28) (a) Gallagher, M. J.; Harvey, S.; Raston, C. L.; Sue, R. E. J.
Chem. Soc., Chem. Commun. 1988, 289. (b) Raston, C. L.; Salem, G. J.
Chem. Soc., Chem. Commun. 1984, 1702. (c) Bogdanovic, B. Acc. Chem.
Res. 1988, 21, 261.
(29) Love, B. E.; Jones, E. G. J. Org. Chem. 1999, 64, 3755.
(30) Zimmer, H.; Hechenbleikner, I.; Homberg, O. A.; Danzik, M. J.
Org. Chem. 1964, 29, 2632.
(31) Guirado, G.; Fleming, C. N.; Lingenfelter, T. G.; Williams, M.
L.; Zuilhof, H.; Dinnocenzo, J. P. J. Am. Chem. Soc. 2004, 126, 14086.
P. J. Org. Chem. 2014, 79, 9297.
(13) Bent, H. A. Chem. Rev. 1961, 61, 275.
(14) By analogy, pentacoordinate methylphenylstannane “ate”
complexes have been shown to prefer having the phenyl group in
the apical position: Reich, H. J.; Phillips, N. H. Pure Appl. Chem. 1987,
59, 1021.
(15) (a) Bock, H.; Rauschenbach, A.; Nather, C.; Kleine, M.; Havlas,
̈
Z. Chem. Ber. 1994, 127, 2043. (b) Knorr, A.; Daub, J. Angew. Chem.,
Int. Ed. Engl. 1996, 34, 2664. (c) Spreitzer, H. Chem. - Eur. J. 1996, 2,
1150. (d) Zhao, B.-J.; Evans, D. H.; Macías-Ruvalcaba, N. S.; Shine, H.
J. J. Org. Chem. 2006, 71, 3737.
(16) Distephano, G.; Pignataro, S.; Ricci, A.; Colonna, F. P.;
Pietropaolo, D. Ann. Chim. 1974, 64, 153.
(17) Lu, K.-T.; Eiden, G. C.; Weisshaar, J. C. J. Phys. Chem. 1992, 96,
9742.
(18) (a) The (maximum) rate constant for electron transfer from 1
to 2 is equal to (kd[1]/k−d)ket, where kd is the rate constant for
diffusional encouter, k−d is the rate constant for diffusional separation,
and ket is the maximum rate constant for electron tranfer for 1 and 2 at
the encounter distance as discussed in the text. From the
Smoluchowski equation,18b kd in CH3CN is calculated to be ∼2 ×
1010 M−1s−1 (kd = 4πNr1+2D1+2/1000) with r1+2 = 6 Å and D1+2 = 4 ×
G
J. Org. Chem. XXXX, XXX, XXX−XXX