Paper
Organic & Biomolecular Chemistry
MEM non-essential amino acid solution at 37 °C in a 5% CO2
atmosphere. Cells were plated at 25 000 cells per well in a
24-well tissue culture-treated polystyrene plate overnight prior to
use for microscopy. Growth medium was changed prior to treat-
ment with 10 μM α-TOH for 24 h, or 1.5 mM DEM for 1 and 2 h.
At indicated time points, media was removed and replaced with
1× Hank’s Balanced Salt Solution, pH 7.2, and 10 μL of a solution
of 2b in DMSO (final concentration of 2b = 100 μM) was added.
Imaging was performed on a Zeiss LSM 880 confocal microscope
fitted with live cell incubator chamber using 405 nm excitation
laser line, and 10x objective lens. Both, differential interference
contrast (DIC) and fluorescence images were acquired. All image
analysis was performed using ImageJ v1.45S.
5 (a) E. T. Kool, D. H. Park and P. Crisalli, J. Am. Chem. Soc.,
2013, 135, 17663; (b) T. Dang, M. Suchý, Y. J. Truong,
W. Oakden, W. W. Lam, C. Lazurko, G. Facey, G. J. Stanisz
and A. J. Shuhendler, Chem. – Eur. J., 2018, 24, 9148.
6 P. J. O’Brien, A. G. Siraki and N. Shangari, Crit. Rev.
Toxicol., 2005, 35, 609.
7 O. E. Owen, V. E. Trapp, C. L. Skutches, M. A. Mozzoli,
R. D. Hoeldtke, G. Boden and G. A. Reichard Jr., Diabetes,
1982, 31, 242.
8 P. Fuchs, C. Loeseken, J. K. Schubert and W. Miekisch,
Int. J. Cancer, 2010, 126, 2663.
9 D. T. Antoniak, M. J. Duryee, T. R. Mikuls, G. M. Thiele and
D. R. Anderson, Free Radicals Biol. Med., 2015, 89, 409.
10 S. Ivanova, G. I. Botchkina, Y. Al-Abed, M. Meistrell III,
F. Batliwalla, J. M. Dubinsky, C. Iadecola, H. Wang,
P. K. Gregersen, J. W. Eaton and K. J. Tracey, J. Exp. Med.,
1998, 188, 327.
Conflicts of interest
The authors declare no competing financial interest.
11 For selected examples see; (a) T. F. Brewer and C. J. Chang,
J. Am. Chem. Soc., 2015, 137, 10886; (b) L. H. Yuen,
N. S. Saxena, H. S. Park, K. Weinberg and E. T. Kool, ACS
Chem. Biol., 2016, 11, 2312; (c) T. F. Brewer, G. Burgos-
Barragan, N. Wit, K. J. Patel and C. J. Chang, Chem. Sci., 2017,
8, 4073; (d) K. J. Bruemmer, O. Green, T. A. Su, D. Shabat and
C. J. Chang, Angew. Chem., Int. Ed., 2018, 57, 7508; (e) M. Yang,
J. Fan, J. Zhang, J. Du and X. Peng, Chem. Sci., 2018, 9, 6758.
12 C. Lazurko, I. Radonjic, M. Suchý, G. Liu, A. G. Rolland-
Lagan and A. J. Shuhendler, ChemBioChem, 2018, DOI:
10.1002/cbic.201800427, in press.
Acknowledgements
We wish to acknowledge Professor Jeffrey Keillor for allowing us
to use his Cary Eclipse Fluorescence Spectrophotometer for the
duration of this work. This work was supported by an NSERC
Discovery Grant RGPIN 2015-05796 (A. J. S.), the Canada
Research Chairs Program 950-230754 (A. J. S.), and the Canadian
Institutes of Health Research PJT376892 (A. J. S.); the financial
support provided by these agencies is gratefully acknowledged.
13 A. Pardo, D. Reyman, J. M. L. Poyato and F. Medina,
J. Lumin., 1992, 51, 269.
14 Z. A. M. Zielinski and D. A. Pratt, J. Org. Chem., 2017, 82, 2817.
15 MDA is known to form adducts with DNA rapidly, see for
example in. (a) D. Pluskota-Karwatka, A. J. Pawlowicz,
M. Bruszyńska, A. Greszkiewicz, R. Latajka and
L. Kronberg, Chem. Biodiversity, 2010, 7, 959; (b) K. Salus,
M. Hoffmann, T. Siodla, B. Wyrzykiewicz and D. Pluskota-
Karwatka, New J. Chem., 2017, 41, 2409.
Notes and references
1 O. K. Abou-Zied, B. Y. Al-Busaidi and J. Husband, J. Phys.
Chem. A, 2014, 118, 103.
2 According to a recent review, fluorescence properties
associated with anthranilates have never been integrated
into imaging probe development see: (a) R. Duval and
C. Duplais, Nat. Prod. Rep., 2017, 34, 161. For an isolated 16 A. Gönenç, Y. Ozkan, M. Torun and B. Simşek, J. Clin.
example exploiting the blue fluorescence of anthranilic Pharm. Ther., 2001, 26, 141.
acid within the context of chemical biology see: 17 M. Viigimaa, J. Abina, G. Zemtsovskaya, A. Tikhaze,
(b) C. Coburn, E. Allman, P. Mahanti, A. Benedetto,
F. Cabreiro, Z. Pincus, F. Mathijssens, C. Araiz, A. Mandel,
G. Konovalova, E. Kumskova and V. Lankin, Blood Press.,
2010, 19, 164.
M. Vlachos, S. A. Edwards, G. Fischer, A. Davidson, 18 L. S. Bir, S. Demir, S. Rota and M. Köseoğlu, Tohoku J. Exp.
R. E. Pryor, A. Stevens, F. J. Sack, N. Tavernarakis, Med., 2006, 208, 33.
B. P. Braeckman, F. C. Schroeder, K. Nehrke and D. Gems, 19 I. Hajimohammadreza and M. Brammer, Neurosci. Lett.,
PLoS Biol., 2013, 11, e1001613. 1990, 112, 333.
3 While the functionalization of anthranilic acids to form 20 V. Nair and G. A. Turner, Lipids, 1984, 19, 804.
anthranilamides is well developed, see.(a) N. Kanişkan, 21 D. R. Janero, Free Radicals Biol. Med., 1990, 9, 515.
Ş. Kökten and Ĭ. Çelik, ARKIVOC, 2012, viii, 198 and refer- 22 J. Chen, L. Zeng, T. Xia, S. Li, T. Yan, S. Wu, G. Qiu and
ences cited therein, the modification of the benzene ring to
allow for the conjugation of anthranilic acids by e.g. “click” 23 L. He, X. Yang, K. Xu and W. Lin, Chem. Commun., 2017,
reaction is underdeveloped. For an isolated example see: 53, 4080.
(b) C. S. McKay and M. G. Finn, Angew. Chem., Int. Ed., 24 Y. Tsuruta, Y. Date, H. Tonogaito, N. Sugihara, K. Furuno
2016, 55, 12643. and K. Kohashi, Analyst, 1994, 119, 1047.
4 (a) P. Crisalli and E. T. Kool, Org. Lett., 2013, 15, 1646; 25 L. Baiocchi, G. Corsi and G. Palazzo, Synthesis, 1978, 633.
Z. Liu, Anal. Chem., 2015, 87, 8052.
(b) P. Crisalli and E. T. Kool, J. Org. Chem., 2013, 78, 1184.
26 F. Shahidi, Adv. Exp. Med. Biol., 2001, 488, 113.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2018