P. Batail et al.
ARTICLE
tracted by PLATON/SQUEEZE procedure; four free cavities of 428 Å3
per unit cell, each containing 93 e, were found. The solvent molecules
participate as acceptor in hydrogen bonding with coordinated water
molecules.
Fortea, E. Canadell, P. Wzietek, P. Auban-Senzier, C. Pasquier, T.
Giamarchi, M. A. Garcia-Garibay, P. Batail, J. Am. Chem. Soc.
2012, 134, 7880–7891; d) C. Lemouchi, K. Iliopoulos, L. Zorina,
S. Simonov, P. Wzietek, T. Cauchy, A. Rodríguez-Fortea, E. Can-
adell, J. Kaleta, J. Michl, D. Gindre, M. Chrysos, P. Batail, J. Am.
Chem. Soc. 2013, 135, 9366–9376; e) G. Bastien, C. Lemouchi,
M. Allain, P. Wzietek, A. Rodríguez-Fortea, E. Canadell, K. Ili-
opoulos, D. Gindre, M. Chrysos, P. Batail, CrystEngComm 2014,
16, 1241–1244.
Crystallographic data (excluding structure factors) for the structure in
this paper have been deposited with the Cambridge Crystallographic
Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK.
Copies of the data can be obtained free of charge on quoting the de-
pository number CCDC-973160 (Fax: +44-1223-336-033; E-Mail:
deposit@ccdc.cam.ac.uk, http://www.ccdc.cam.ac.uk).
[4] M. Eddaoudi, J. Kim, J. B. Wachter, H. K. Chae, M. O’Keeffe,
O. M. Yaghi, J. Am. Chem. Soc. 2001, 123, 4368–4369.
[5] a) M. Köberl, M. Cokoja, W. A. Herrmann, F. E. Kühn, Dalton
Trans. 2011, 40, 6834–6859; b) Z. Zhang, L. Wojtas, M. J. Zawor-
otko, Cryst. Growth Des. 2011, 11, 1441–1445; c) X. Lin, I. Tele-
peni, A. J. Blake, A. Dailly, C. M. Brown, J. M. Simmons, M.
Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays, P. Hubberstey,
N. R. Champness, M. Schröder, J. Am. Chem. Soc. 2009, 131,
1673–1679; d) J.-R. Li, H.-C. Zhou, Nat. Chem. 2010, 2; e) T.-F.
Liu, Y.-P. Chen, A. A. Yakovenko, H.-C. Zhou, J. Am. Chem. Soc.
2012, 134, 17358–17361; f) Q.-Y. Zhua, Y. Liua, Z.-J. Lua, J.-P.
Wanga, L.-B. Huoa, Y.-R. Qina, J. Dai, Synth. Met. 2010, 160,
713–717; g) X. Song, X. Liu, M. Oh, M. S. Lah, Dalton Trans.
2010, 39, 6178–6780; h) R. Medishetty, L. L. Koh, G. K. Kole,
J. J. Vittal, Angew. Chem. Int. Ed. 2011, 50, 10949–10952; i) I.-
H. Park, K. Kim, S. S. Lee, J. J. Vittal, Cryst. Growth Des. 2012,
12, 3397–3401; j) C. E. Wilmer, M. Leaf, C. Yeon Lee, O. K.
Farha, B. G. Hauser, J. T. Hupp, R. Q. Snurr, Nat. Chem. 2011, 3,
893–898; k) J. F. Eubank, L. Wojtas, M. R. Hight, T. Bousquet,
V. Ch. Kravtsov, M. Eddaoudi, J. Am. Chem. Soc. 2011, 133,
17532–17535; l) K. C. Stylianou, J. Rabone, S. Y. Chong, R.
Heck, J. Armstrong, P. V. Wiper, K. E. Jelfs, S. Zlatogorsky, J.
Bacsa, A. G. McLennan, C. P. Ireland, Y. Z. Khimyak, K.
Mark Thomas, D. Bradshaw, M. J. Rosseinsky, J. Am. Chem. Soc.
2012, 134, 20466–20478.
VT Proton Spin-Lattice Relaxation Time (1H T1) Experiments: Ex-
periments were carried out on static crystalline samples over a wide
range of temperatures (110–300 K). Wide-line 1H spectra were mea-
sured on a static crystalline sample at a 1H Larmor frequency of
210 MHz with a superconducting magnet operating at 4 Tesla using a
NMR spectrometer and probe built at Orsay. The probe is designed so
as to reduce spurious proton signals. Crystals were loaded into a small
glass tube (typically 1.2–1.6 mm in diameter, depending on the amount
1
of material available), on which the NMR coil was wounded. H sig-
nals were recorded using the FID following a π/2 pulse (typically 0.8–
1.5 μs) and spin-lattice relaxation was measured using the standard
saturation recovery sequence. For each T1 measurement we recorded
signals for 20 values of the relaxation delay between the saturating
comb and the measuring pulse.
Computational Details: DFT calculations for the rotational barriers
were performed as described previously[3c,3d] using the hybrid M06–
2X functional[24] and the 6-31G(d,p) basis set[25] as implemented in
the Gaussian09 package.[26] The DFT calculations of the exchange
coupling constants were carried out adopting the hybrid B3LYP func-
tional[21] using the Gaussian 09 code.[26] Basis sets of triple-ζ quality
for Cu and double-ζ quality for all other atoms were used.[27]
[6] S. L. Gould, D. Tranchemontagne, O. M. Yaghi, M. A. Garcia-
Garibay, J. Am. Chem. Soc. 2008, 130, 3246–3247.
[7] a) G. S. Kottas, L. I. Clarke, D. Horinek, J. Michl, Chem. Rev.
2005, 105, 1281–1376; b) D. Horinek, J. Michl, Proc. Natl. Acad.
Sci. USA 2005, 102, 14175–14180; c) A. V. Akimov, A. B. Kolo-
meisky, J. Phys. Chem. C 2011, 115, 13584–13591; d) S. Masiero,
S. Lena, S. Pieraccini, G. P. Spada, Angew. Chem. Int. Ed. 2008,
47, 3184–3187; E. R. Kay, D. A. Leigh, F. Zerbetto, Angew.
Chem. Int. Ed. 2007, 46, 72–191; e) B. L. Feringa, Acc. Chem.
Res. 2001, 34, 504–513.
Supporting Information (see footnote on the first page of this article):
Exchange coupling constants J for CuII dimers (Table S1) and plot of
calculated versus experimental J for 47 compounds (Figure S1).
Acknowledgements
[8] a) B. Rodríguez-Molina, S. Perez-Estrada, M. A. Garcia-Garibay,
J. Am. Chem. Soc. 2013, 135, 10388–10395; b) B. Rodríguez-
Molina, N. Farfán, M. Romero, J. M. Méndez-Stivalet, R. Santil-
lan, M. A. Garcia-Garibay, J. Am. Chem. Soc. 2011, 133, 7280–
7283; c) M. A. Garcia-Garibay, Proc. Natl. Acad. Sci. USA 2005,
102, 10771–10776; d) T.-A. V. Khuong, J. E. Nunez, C. E. Godi-
nez, M. A. Garcia-Garibay, Acc. Chem. Res. 2006, 39, 413–422;
e) S. D. Karlen, H. Reyes, R. E. Taylor, S. I. Khan, M. F. Haw-
thorne, M. A. Garcia-Garibay, Proc. Natl. Acad. Sci. USA 2010,
107, 14973–14977; f) V. Vogelsberg, M. A. Garcia-Garibay,
Chem. Soc. Rev. 2012, 41, 1892–1910.
G. B. thanks the CNRS and the Région des Pays de la Loire for a PhD
grant. C. L. thanks the Région des Pays de la Loire for a Post-Doctoral
grant. Work at Angers was supported by the Region des Pays de la
Loire Grant MOVAMOL and the joint CNRS-Russian Federation
grants PICS 6028 and RFBR-CNRS 12–03–91059. Work in Bellaterra
and Tarragona was supported by the Spanish Ministerio de Economía y
Competitividad (Projects FIS2012–37549-C05–05, CTQ2011–29054-
C02–01, and CSD 2007–00041).
[9] a) A. Comotti, S. Bracco, P. Valsesia, M. Beretta, P. Sozzani,
Angew. Chem. Int. Ed. 2010, 49, 1760–1764; b) T. Ueda, K. Kuro-
kawa, Y. Kawamura, K. Miyakubo, T. Eguchi, J. Phys. Chem.
C 2012, 116, 1012–1019; c) J. A. Rodrìguez-Velamazán, M. A.
González, J. A. Real, M. Castro, M. Carmen Muñoz, A. B. Gas-
par, R. Ohtani, M. Ohba, K. Yoneda, Y. Hijikata, N. Yanai, M.
Mizuno, H. Ando, S. Kitagawa, J. Am. Chem. Soc. 2012, 134,
5083–5089; d) D. Kolokolov, H. Jobic, A. G. Stepanov, J. Olliv-
ier, S. Rives, G. Maurin, T. Devic, C. Serre, G. Férey, J. Phys.
Chem. C 2012, 116, 15093–15098; e) Y. Hijikata, S. Horike, D.
Tanaka, J. Groll, M. Mizuno, J. Kim, M. Takatade, S. Kitagawa,
Chem. Commun. 2011, 47, 7632–7634; f) J. J. Chen, X. Kong, K.
Sumida, M. A. Manumpil, J. R. Long, J. A. Reimer, Angew.
Chem. Int. Ed. 2013, 52, 12043–12046.
References
[1] F. A. Almeida Paz, J. Klinowski, S. M. F. Vilela, J. P. C. Tomé,
J. A. S. Cavaleiro, J. Rocha, Chem. Soc. Rev. 2012, 41, 1088–
1110.
[2] a) C. N. R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem.
Int. Ed. 2004, 43, 1466–1496; b) A. K. Cheetham, C. N. R. Rao,
R. K. Keller, Chem. Commun. 2003, 4780–4795.
[3] a) C. Lemouchi, C. Vogelsberg, S. Simonov, L. Zorina, P. Batail,
S. Brown, M. A. Garcia-Garibay, J. Am. Chem. Soc. 2011, 133,
6371–6379; Correction, J. Am. Chem. Soc. 2011, 133, 13765; b)
C. Lemouchi, A.-L. Barrès, C. Mézière, D. Rondeau, L. Zorina,
P. Wzietek, P. Batail, Dalton Trans. 2011, 40, 8075–8078; c) C.
Lemouchi, C. Mézière, L. Zorina, S. Simonov, A. Rodríguez-
1132
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Z. Anorg. Allg. Chem. 2014, 1127–1133