81.014 MHz, H3PO4 external standard; 19F 188.15 MHz, CFCl3 external
standard). TMSCl was freshly distilled.
HO
B′
DMTrO
B
O
DMTrO
B
O
O
‡ Selected data for 5a: yield 97%; dP (CDCl3): 147.37, 147.93. For 5b yield
ODMTr
9
98%; dP (CDCl3): 147.49, 147.37.
§ Compound 6 was prepared in 90% yield from chloro(diisopropylamino)-
2-cyanoethoxyphosphine via 2-cyanoethoxy(diisopropyl)amino-4-nitro-
phenoxyphospine by standard ligand exchange procedures (ref. 8). dP
(CDCl3): 162.8, 148.9 (JP–F 111.8.1 Hz); dF (CDCl3): 275.1, 281.06
(JP–F 1118.4 Hz).
¶ Selected data for 7a: yield 97%; dP (C6D6): 138.02, 123.03, 137.78,
122.78; dF (C6D6): 253.07, 259.51 (JP–F 1214.07 Hz), 253.44, 259.90
(JP–F 1216.05 Hz). For 7b: yield 95%; dP (C6D6): 138.90 , 123.47; dF
(C6D6): 252.99, 259.46 (JP–F 1216.9 Hz), 253.19, 259.58 (JP–F 1216.8
Hz).
∑ Selected data for 10a: yield 98%; dP (CDCl3): 138.42, 123.35, 139.72,
124.61; d (CDCl3): 253.91, 260.21 (JP–F 1220.63 Hz), 253.61, 260.07
(JP–F 1224.03 Hz). For 10b: yield 98%, dP (CDCl3): 138.50, 123.47, 140.04,
124.90; dP (CDCl3): 252.18, 258.66 (JP–F 1221.24 Hz), 252.77, 259.29
(JP–F 1226.99 Hz).
O
O
N
P
O
B′
Me3SiCl
P
F
F
ODMTr
8
10a B = Th, B′ = Th
b B = Ad(Bz), B′ = Th
Scheme 4 Reagents and conditions: 8 (1.0 equiv.), 9 (1.0 equiv.), TMSCl
(0.30 equiv.), THF, room temp., 1 h
DMTrO
B
F
F
O
N
P
** Selected data for 12: yield 95%; dP (CDCl3): 128.58, 111.77,
95.79 (JP–F 1295.4, JP–F 1294.9 Hz); dF (CDCl3): 244.18, 251.06, 244.36,
251.63 (JP–F 1296.9, JP–F 1293.6 Hz).
11
Me3SiCl
HN
4
+
O
F
F
P
12
Scheme 5 Reagents and conditions: 4 (1.0 equiv.), 11 (1.1 equiv.), TMSCl
(0.6 equiv.), room temp., 1 h
References
1 R. L. Letsinger and W. B. Lunsford, J. Am. Chem. Soc., 1976, 98,
3655.
2 S. L. Beaucage and M. H. Caruthers, Tetrahedron Lett., 1981, 22, 1859;
E. Uhlman and A. Peyman, Chem. Rev., 1990, 90, 543; S. L. Beaucage
and R. P. Iyer, Tetrahedron, 1993, 48, 2223.
3 S. M. Gryaznov and R. L. Letsinger, Nucleic Acids Res., 1992, 20,
1879.
4 R. M. Karl, W. Richter, R. Klo¨sel, M. Mayer and I. Ugi, Nucleosides
Nucleotides, 1996, 15, 379.
5 M. Cypryk, J. Chojnowski and J. Michalski, Tetrahedron, 1985, 41,
2471.
6 G. Baschang and V. Kvita, Angew. Chem., 1973, 44; Angew. Chem., Int.
Ed. Engl., 1973, 12, 71; G. S. Bajwa and W. G. Bentrude, Tetrahedron
Lett., 1978, 5, 421.
7 A. Kraszewski and K. E. Norris, Nucleic Acids Res. Symp. Ser., 1987,
18, 177.
8 W. Dabkowski and I. Tworowska, Tetrahedron Lett., 1995, 36, 1095.
9 W. Dabkowski, I. Tworowska, J. Michalski and F. Cramer, J. Chem.
Soc., Chem. Commun., 1995, 1435.
directly with alcohol to give ester R2PORA or via intermediate
formation of R2PCl. In both cases TMSCl is regenerated. A
mechanistic path may be considered in which TMSCl reacts
with alcohol to form hydrogen chloride which then activates an
PIII amide in situ. But it is well known that TMSCl reacts very
slowly with alcohols unless a catalyst is present.11 Formation of
hydrogen chloride would effect the removal of the acid labile
DMTr group. This is actually observed when the commercial
TMSCl contaminated with HCl is used. However when
hydrogen chloride free TMSCl is utilized, this is not observed.
Work is currently in progress aimed at utilizing the TMSCl
activation for the synthesis of oligonucleotides on solids
supports and better understanding its mechanistic features.
This work was supported by the State Committee for
Scientific Research, Poland (No 3T09A 155 10), German–
Polish project (X084-9) and Perstorp Pharma, Perstop, Swe-
den.
10 M. K. Gratchev, V. Yu. Mishina and E. E. Nifantyev, Zh. Obshch.
Khim., 1993, 63, 1671.
11 J. G. Lee and K. K. Kang, J. Org. Chem., 1988, 53, 3634; D. C. Snyder,
J. Org. Chem., 1995, 60, 2638.
Footnotes
* E-mail: wdabkow@free.polbox.pl
† All manipulations were performed under argon and all solvents dried prior
to use. NMR spectra were recorded on a Bruker AC 200 spectrometer (31
Received in Glasgow, UK, 17th February 1997; Com.
7/01924F
P
878
Chem. Commun., 1997