10.1002/anie.201901175
Angewandte Chemie International Edition
COMMUNICATION
coordinating solvent, gave comparable results for hydrogenation
of methyl 2-acetamidoacrylate 5 using ligand 4c (95.2:4.8 R:S)
compared to those in CDCl3, employment of methanol as reaction
solvent led to a significant drop in selectivity (80.8:19.2 R:S), most
likely attributed to the solvent inhibiting ligand-ligand interaction
that drive the rotameric enrichment.
In summary, we have shown that the fluxional ligands 4a-c, all of
which contain chiral (S)-amino acid derived 5,5’–diamide selector
moieties, form well-defined supramolecular dimers by
intermolecular interlocking. Due to the bias of the chiral selectors,
a complete transformation into a single Rax rotamer is achieved.
The diastereomeric enrichment is based on a process of
supramolecular, cooperative self-recognition, where diamide
asymmetric transformation. It is important to point out, that chiral
induction during catalysis is conceptually decoupled from the
alignment of the ligands. Cooperative chiral induction that results
from the self-recognition properties of the selector units evokes a
stereoconvergent response from the dynamic ligand core, a bias
which is further relayed during catalysis. The presented system
yields a predictable core structure that has the potential to be
combined with other biaryl-based ligand types to yield self-
recognizing enantioselective catalysts for a number of different
transformations.
Experimental Section
moieties diastereoselectively lock the rotamers through
a
“tweezer”-like network of hydrogen bonds into a preferential axial
conformation. The ligands were employed in Rh-catalyzed,
enantioselective hydrogenation experiments. All ligands showed
high to very high enantioselectivities with various prochiral olefins.
The best performance was observed with phenylalanine-based
ligand 4c which converted methyl 2-acetamido acrylate 5 with an
er of 96.0:4.0 (R:S). The catalytic experiments could also be used
to ascertain the axial chirality of the ligands and to verify the
diastereomeric purity of the ligand and the stereomeric integrity of
the catalyst over the course of the reaction.
Supporting information for this article is available on the WWW under XXX
Acknowledgements
Generous financial support by the European Research Council
(ERC) for a Starting Grant (No. 258740, AMPCAT) and the Max-
Planck-Society is gratefully acknowledged. We thank Dr. Peter
Mayer for the X-ray structure analysis.
To the best of our knowledge, this is the first example where the
concepts of stereodynamic ligands and supramolecular
assemblies are combined to generate a diastereomerically pure
compound that can convey very high enantioselectivity in an
Keywords: supramolecular chemistry • self-recognition •
stereodynamics • asymmetric catalysis • ligand design
[1] a) R. G. Cooks, D. Zhang, K. J. Koch, F. C. Gozzo, M. N. Eberlin, Anal.
Chem. 2001, 73, 3646-3655; b) P. D. Bailey, J. Chem. Soc., Chem.
Commun. 1995, 1797-1798; c) A. Saghatelian, Y. Yokobayashi, K. Soltani,
M. R. Ghadiri, Nature 2001, 409, 797-801.
[10] K. Soai, T. Kawasaki, A. Matsumoto, Acc. Chem. Res. 2014, 47, 3643-
3654.
[11] A. H. Alberts, H. Wynberg, J. Am. Chem. Soc. 1989, 111, 7265-7266.
[12] a) H. Wynberg, B. Feringa, Tetrahedron 1976, 32, 2831-2834; b) B.
Feringa, H. Wynberg, J. Am. Chem. Soc. 1976, 98, 3372-3373.
[13] H. Danda, H. Nishikawa, K. Otaka, J. Org. Chem. 1991, 56, 6740-6741.
[14] Y. Shvo, M. Gal, Y. Becker, A. Elgavi, Tetrahedron: Asymmetry 1996, 7,
911-924.
[2] a) S. Carboni, C. Gennari, L. Pignataro, U. Piarulli, Dalton Trans. 2011, 40,
4355-4373; b) M. Raynal, P. Ballester, A. Vidal-Ferran, P. W. N. M. van
Leeuwen, Chem. Soc. Rev. 2014, 43, 1660-1733.
[3] a) M. Weis, C. Waloch, W. Seiche, B. Breit, J. Am. Chem. Soc. 2006, 128,
4188-4189; b) J. Wieland, B. Breit, Nat Chem 2010, 2, 832-837; c) W. K.
Marie, L. L. Günter, B. Bernhard, Angew. Chem. Int. Ed. 2018, 57, 5100-
5104; Angew. Chem. 2018, 130, 5194-5198.
[15] G. Storch, O. Trapp, Nature Chem. 2017, 9, 179-187.
[16] M. M. Green, M. P. Reidy, R. D. Johnson, G. Darling, D. J. O'Leary, G.
Willson, J. Am. Chem. Soc. 1989, 111, 6452-6454.
[17] a) L. J. Prins, P. Timmerman, D. N. Reinhoudt, J. Am. Chem. Soc. 2001,
123, 10153-10163; b) A. R. A. Palmans, J. A. J. M. Vekemans, E. E.
Havinga, E. W. Meijer, Angew. Chem. Int. Ed. 1997, 36, 2648-2651;
Angew. Chem. 1997, 109, 2763-2765; c) L. Brunsveld, A. P. H. J.
Schenning, M. A. C. Broeren, H. M. Janssen, J. A. J. M. Vekemans, E. W.
Meijer, Chem. Lett. 2000, 29, 292-293; d) L. J. Prins, J. Huskens, F. de
Jong, P. Timmerman, D. N. Reinhoudt, Nature 1999, 398, 498-502.
[18] a) B. M. W. Langeveld-Voss, R. J. M. Waterval, R. A. J. Janssen, E. W.
Meijer, Macromolecules 1999, 32, 227-230; b) Y. Nagata, T. Nishikawa, M.
Suginome, ACS Macro Lett. 2016, 5, 519-522.
[4] a) Z. Kokan, S. I. Kirin, Eur. J. Org. Chem. 2013, 2013, 8154-8161; b) Z.
Kokan, Z. Glasovac, M. Majerić Elenkov, M. Gredičak, I. Jerić, S. I. Kirin,
Organometallics 2014, 33, 4005-4015; c) A. C. Laungani, B. Breit, Chem.
Commun. 2008, 844-846.
[5] a) V. Blanco, A. Leigh, V. Marcos, Chem. Soc. Rev. 2015, 44, 5341-
5370; b) M. Vlatković, B. S. L. Collins, B. L. Feringa, Chem. Eur. J. 2016,
22, 17080-17111; c) G. Romanazzi, L. Degennaro, P. Mastrorilli, R.
Luisi, ACS Catal. 2017, 7, 4100-4114.
[6] a) P. Dydio, C. Rubay, T. Gadzikwa, M. Lutz, J. N. H. Reek, J. Am. Chem.
Soc. 2011, 133, 17176-17179; b) T. Yamamoto, R. Murakami, S. Komatsu,
M. Suginome, J. Am. Chem. Soc. 2018, 140, 3867-3870; c) J. M. Zimbron,
X. Caumes, Y. Li, C. M. Thomas, M. Raynal, L. Bouteiller, Angew. Chem.
Int. Ed. Engl. 2017, 56, 14016-14019, Angew. Chem. 2017, 129, 14204-
14207.
[19] a) W. H. Pirkle, P. G. Murray, S. R. Wilson, J. Org. Chem. 1996, 61,
4775-4777; b) H. Frank, G. J. Nicholson, E. Bayer, Angew. Chem. Int.
Ed. Engl. 1978, 17, 363-365; Angew. Chem. 1978, 90, 396-398; c) G.
Storch, M. Siebert, F. Rominger, O. Trapp, Chem. Commun. 2015, 51,
15665-15668; d) G. Storch, M. Haas, O. Trapp, Chem. Eur. J. 2017, 23,
5414-5418.
[7] a) F. Maier, O. Trapp, Angew. Chem. Int. Ed. Engl. 2014, 53, 8756-8760;
Angew. Chem. 2014, 126, 8901-8905; b) G. Storch, O. Trapp, Chirality
2018, 30, 1150-1160.
[20] F. Maier, O. Trapp, Angew. Chem. Int. Ed. 2012, 51, 2985-2988; Angew.
Chem. 2012, 124, 3039-3043.
[8] T. Satyanarayana, S. Abraham, H. B. Kagan, Angew. Chem. Int. Ed. 2009,
48, 456-494; Angew. Chem. 2009, 121, 464-503; b) C. Girard, H. B.
[21] H. Kessler, Angew. Chem. Int. Ed. Engl. 1982, 21, 512-523; Angew. Chem.
1982, 94, 509-520.
Kagan, Angew. Chem. Int. Ed. 1998, 37, 2922-2959.
[9] M. H. Todd, Chem. Soc. Rev. 2002, 31, 211-222
[22] a) J. Yu, T. V. RajanBabu, J. R. Parquette, J. Am. Chem. Soc. 2008, 130,
7845-7847; b) Y.-G. Zhou, X. Zhang, Chem. Commun. 2002, 1124-1125.
This article is protected by copyright. All rights reserved.