Article
Scheme 1. Illustrative Preparations of Substituted Tetrakis-
(phenyl)germanes
Organometallics, Vol. 29, No. 3, 2010 589
Tetrakis(o-ethoxyphenyl)germane. This tetrakis compound
was secured from a 10:1 Grignard to GeCl4 ratio with replace-
ment of THF with toluene (vide supra). Yield: 1.4 g (10%), mp
216-220 °C (lit.33 254-255 °C). Anal. Calcd for C32H36GeO4:
C, 68.98; H, 6.51. Found: C, 68.66; H, 6.64. Some attempts
to prepare the tetrakis derivative resulted in isolation of
tris(o-ethoxyphenyl)chlorogermane. Yield: 0.8 g (ca. 50%), mp
111-113 °C. Anal. Calcd for C24H27ClGeO3: C, 61.14; H, 5.77.
Found: C, 61.91; H, 6.38.
Tris(o-ethoxyphenyl)germane. In a second attempt to synthe-
size tetrakis(o-ethoxyphenyl)germane, tris(o-ethoxyphenyl)germane
was recovered. Yield: 0.4 g (25%), mp 119-122 °C. Anal. Calcd
for C24H28GeO3: C, 65.95; H, 6.46. Found: C, 66.12; H, 6.90.
Tetrakis(p-tert-butylphenyl)germane. From p-BrC6H4-t-C4H9
(12.79 g, 0.060 mol), Mg (1.61 g, 0.066 mol), GeCl4 (3.22 g,
0.015 mol). Yield: 1.5 g (17%), mp 297-301 °C (lit.31 mp 350 °C
(dec)).
filtration of triethylamine hydrochloride, removal of solvent
under vacuum, and recrystallization of solid products. Reacting
quantities for typical Grignard preparations are presented in the
following order: identity and amount of reacting substituted
phenyl bromide, amount of reacting magnesium turnings, iden-
tity and quantity of germanium tetrahalide, yield in grams and
percent. Reaction amounts for the phenoxides and thiophen-
oxides appear in the following order: identity and amount of
reacting substituted phenol or thiophenol, quantity of triethyl-
amine, identity and quantity of germanium tetrahalide, yield in
grams and percent. Pure product yields ranged from 10% to
50% and were frequently determined from multiple prepara-
tions using varying conditions. Carbon-13 and proton and
germanium-73 NMR data for the derivatives appear in Tables 1
and 2, respectively.
Tetrakis(p-trifluoromethylphenyl)germane. From p-BrC6H4-
CF3 (12.83 g, 0.057 mol), Mg (1.53 g, 0.063 mol), GeCl4 (3.06 g,
0.014 mol). Yield: 1.4 g (15%), mp 170-172 °C (lit.29 mp 173-
174 °C). Anal. Calcd for C28H16F12Ge: C, 51.50; H, 2.47.
Found: C, 50.91; H, 2.42.
Tetrakis(m-trifluoromethylphenyl)germane. From m-BrC6H4
CF3 (30.60 g, 0.136 mol), Mg (3.63 g, 0.150 mol), GeCl4 (7.30 g,
0.034 mol). Yield: 6.0 g (27%), mp 119-120 °C. Anal. Calcd for
C28H16F12Ge: C, 51.50; H, 2.47. Found: C, 50.63; H, 2.59.
Tetrakis(p-methoxyphenyl)germane. From p-BrC6H4OCH3,
(5.24 g, 0.028 mol), Mg (0.75 g, 0.031 mol), GeCl4 (1.51 g,
0.0070 mol). Yield: 0.7 g (20%), mp 175-176 °C (lit.30 mp 218-
222 °C; lit.31 mp not given; lit.32 mp 157-163 °C).
Tetrakis(m-methoxyphenyl)germane. From m-BrC6H4OCH3
(5.24 g, 0.028 mol), Mg (0.75 g, 0.031 mol), GeCl4 (1.51 g, 0.0070
mol). Yield: 0.6 g (17%), mp 158-161 °C. Anal. Calcd for
C28H28GeO4: C, 67.11; H, 5.63. Found: C, 63.71; H, 5.49.
Tetrakis(o-methoxyphenyl)germane. This tetrakis derivative
was secured from a modification30 of the standard procedure in
which THF was replaced with toluene by distillation after
formation of the Grignard reagent, followed by a 30 h reflux
period, from o-BrC6H4OCH3 (2.99 g, 0.016 mol), Mg (0.43 g,
0.018 mol), and GeCl4 (0.86 g, 0.0040 mol). Yield: 0.4 g (20%),
mp 188-190 °C (lit.30 mp 168-170 °C; lit.34 mp 213-214 °C).
Anal. Calcd for C28H28GeO4: C, 67.11; H, 5.63. Found: C,
67.71; H, 5.87.
Tetrakis(p-chlorophenyl)germane. From p-BrC6H4Cl (12.25 g,
0.064 mol), Mg (1.72 g, 0.070 mol), GeCl4 (3.43 g, 0.016 mol).
Yield: 1.0
g (12%), mp 153-157 °C. Anal. Calcd for
C24H16Cl4Ge: C, 55.56; H, 3.11. Found: C, 54.89; H, 3.41.
Tetrakis(o-methylphenoxy)germane. From o-HOC6H4CH3
(12.61 g, 0.1167 mol), (C2H5)3N (12.07 g, 0.1193 mol), GeCl4
(6.38 g, 0.029 mol). Yield: 3.1 g (20%), undistillable amber-
colored oil. Anal. Calcd for C28H28GeO4: C, 67.10; H, 5.63.
Found: C, 68.54; H, 6.91.
Tetrakis(o-methoxyphenoxy)germane. From o-HOC6H4OCH3
(5.00 g, 0.043 mol), (C2H5)3N (4.56 g, 0.0451 mol), GeCl4 (2.14 g,
0.010 mol). Yield: 2.9 g (20%), undistillable amber-colored oil.
Anal. Calcd for C28H28GeO8: C, 59.51; H, 4.99. Found: C, 61.16;
H, 5.52.
Tris(o-methoxyphenoxy)germane. Employing the synthetic
conditions for the tetrakis derivative but with diethyl ether as
reaction solvent and a 3 h reflux period produced the tris
germanium hydride. Yield: 1.5 g (15%), undistillable amber-
colored oil. Anal. Calcd for C21H22GeO6: C, 56.93; H, 5.01.
Found: C, 56.94; H, 5.52.
Tetrakis(o-methylthiophenoxy)germane. From o-HSC6H4OCH3
(4.93 g, 0.0397 mol), (C2H5)3N (4.16 g, 0.0411 mol), GeCl4 (2.16 g,
0.0101 mol). Yield: 3.5 g (50%), mp 83-85 °C. Anal. Calcd for
C28H28GeS4: C, 59.48; H, 4.99. Found: C, 59.49; H, 5.11.
Tetrakis(o-methoxythiophenoxy)germane. From o-HSC6H4OCH3
(5.12 g, 0.036 mol), (C2H5)3N (3.64 g, 0.036 mol), GeCl4 (2.00 g,
0.093 mol). Yield: 1.9 g (36%), mp 94-96 °C. Anal. Calcd for
C28H28GeO4S4: C, 53.40; H, 4.48. Found: C, 53.23; H, 4.58.
1
NMR Spectra. H and 13C NMR spectra were obtained on
Varian UNITY 300 MHz and INOVA 500 MHz spectrometers
using conditions described previously.1,5 Samples were con-
tained in 5 mm o.d. tubes. Proton chemical shifts were refer-
enced to the chloroform-d residual solvent line set to the TMS-
based chemical shift 7.24 ppm. Carbon chemical shifts were
referenced to the 13C centerline in CDCl3, taken as 77.0 ppm.
(33) Lapkin, I. I.; Dumler, V. A.; Ponosova, E. S. Zh. Obshch. Khim.
1971, 41, 133–135.
Tetrakis(p-ethoxyphenyl)germane. From p-BrC6H4OC2H5
(30.56 g, 0.152 mol), Mg (4.07 g, 0.167 mol), GeCl4 (8.14 g,
0.038 mol). Yield: 3.2 g (15%), mp 102-108 °C. Anal. Calcd for
C32H36GeO4: C, 68.98; H, 6.51. Found: C, 68.38; H, 6.46.
Tetrakis(m-ethoxyphenyl)germane. From m-BrC6H4OC2H5
(20.91 g, 0.104 mol), Mg 2.78 g, 0.114 mol), GeCl4 (5.66 g,
0.026 mol). Yield: 2.5 g (17%), mp 70-72 °C. Anal. Calcd for
C32O4H36Ge: C, 68.98; H, 6.51. Found: C, 68.40; H, 6.86.
(34) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.;
Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.;
Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson,
G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,
H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,
O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas,
O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.;
Gonzalez, C.; and Pople, J. A. Gaussian 03, Version 4.1.2; Gaussian, Inc.:
Wallingford, CT, 2004.
(29) Steward, O. W.; Dziedzic, J. E.; Johnson, J. S. J. Org. Chem.
1971, 36, 3475–3480.
(30) Eaborn, C.; Singh, B. J. Organomet. Chem. 1979, 177, 333–348.
(31) Klaukien, H.; Lehnig, M.; Reiche, T; Reiss, S.; Such, P. J. Chem.
Soc., Perkin Trans. 2 1995, 2115–2119.
(32) Takeuchi, Y.; Nishikawa, M.; Hachiya, H.; Yamamoto, H.
Magn. Reson. Chem. 2005, 43, 662–664.