J. Am. Chem. Soc. 1996, 118, 2527-2528
2527
Scheme 1a
Synthesis of Enantiomerically Pure Anti-Aldols: A
Highly Stereoselective Ester-Derived Titanium
Enolate Aldol Reaction
Arun K. Ghosh* and Masanobu Onishi
Department of Chemistry
UniVersity of Illinois at Chicago
845 West Taylor Street, Chicago, Illinois 60607
ReceiVed NoVember 21, 1995
The aldol reaction leading to enantioselective construction
of carbon-carbon bonds has emerged as an extremely powerful
method in organic synthesis. In this context, a number of
excellent synthetic methods have been developed over the
years.1 The control of both relative and absolute acyclic
stereochemistry in aldol reactions can now be achieved in a
highly stereoselective manner with a high degree of predict-
ability. Such control has become particularly sophisticated in
the synthesis of various syn-aldol products and is used widely.2
We have recently reported that commercially available optically
active cis-1-amino-2-indanol-derived oxazolidinones are highly
effective chiral auxiliaries for syn-aldol reactions.3 The corre-
sponding enantioselective anti-aldol methodologies are currently
an active area of research.4 Herein, we report the development
of a convenient cis-1-arylsulfonamido-2-indanol-derived tita-
nium ester enolate based aldol reaction to provide anti-aldol
products with excellent diastereoselectivity and isolated yields.
Optically active cis-1-arylsulfonamido-2-indanols are readily
accessible by sulfonylation of commercially available, enan-
tiomerically pure cis-1-amino-2-indanols. The optically pure
anti-R-methyl-â-hydroxy acids are conveniently obtained after
removal of the chiral auxiliary under mild saponification
conditions, and the chiral auxiliary is recovered without loss of
optical purity.
a Key: (a) CH3CH2COCl, Et3N, CH2Cl2, 23 °C; (b) TiCl4, iPr2NEt,
23 °C then RCHO and TiCl4, CH2Cl2, -78 °C; (c) LiAlH4, THF, 0-23
°C; (d) Me2C(OMe)2, PPTS, CH2Cl2, 23 °C; (e) LiOH, THF-H2O, 23
°C; (f) CH2N2, Et2O, 23 °C.
and triethylamine (3 equiv) in CH2Cl2 in the presence of a
catalytic amount of DMAP at 23 °C for 12 h (85-92% yield).
The acylation of hydroxy sulfonamide 1 with propionyl chloride
(1.2 equiv) and triethylamine (3 equiv) in CH2Cl2 at 23 °C for
12 h afforded the propionate ester 2 (mp 106 °C; R23D +86°, c
0.98, CHCl3) after silica gel chromatography (91% yield). The
titanium enolate of 2 was generated by reaction with 1.2 equiv
of TiCl4 in CH2Cl2 at 0-23 °C for 15 min followed by addition
of 4 equiv of N-ethyldiisopropylamine at 23 °C and stirring of
the resulting brown solution for 1 h.6,7 The 1H-NMR (400 MHz)
studies of the titanium enolate generated in a mixture of CDCl3
and CH2Cl2, as described above, established that the enolization
is complete under these conditions, providing a single enolate
presumably with Z-geometry.8 The titanium enolate thus
generated was reacted with 2 equiv of butyraldehyde or
isobutyraldehyde at -78 to 23 °C for several hours; interest-
ingly, however, no aldol product was obtained, and the starting
propionate ester 2 was recovered unchanged. However, the
reaction of the above titanium enolate with various aldehydes
precomplexed with TiCl4 proceeded with good to excellent
diastereoselectivities and isolated yields. The reactions are
typically carried out by addition of the above titanium enolate
to a solution of 2 equiv of aldehyde precomplexed with 2.4
equiv of TiCl4 in CH2Cl2 at -78 °C followed by stirring the
resulting mixture for 1 h and workup with aqueous NH4Cl
The 1R,2S-chiral sulfonamide 1 was prepared (Scheme 1)
by reaction with commercially available5 optically active 1(R),2-
(S)-cis-aminoindan-2-ol, p-toluenesulfonyl chloride (1 equiv),
(1) (a) Heathcock, C. H. In Asymmetric Synthesis; Morrison, J. D., Ed.;
Academic Press: New York, 1984; Vol. 3, p 111. (b) Evans, D. A.; Nelson,
J. V.; Taber, T. R. Top. Stereochem. 1982, 13, 1. (c) Masamune, S.; Choy,
W.; Petersen, J. S.; Sita, L. R. Angew. Chem., Int. Ed. Engl. 1985, 24, 1.
(d) Braun, M. Angew. Chem., Int. Ed. Engl. 1987, 26, 24. (e) Franklin, A.
S.; Paterson, I. Contemp. Org. Synth. 1994, 317.
(2) (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981,
103, 2127. (b) Evans, D. A. Aldrichimica Acta 1982, 15, 23. (c) Paterson,
I.; Lister, M. A.; McClure, C. K. Tetrahedron Lett. 1986, 27, 4787. (d)
Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xiang, Y. B. J. Am. Chem. Soc.
1989, 111, 5493. (e) Oppolzer, W.; Blagg, J.; Rodriguez, I.; Walther, E. J.
Am. Chem. Soc. 1990, 112, 2767. (f) Roder, H.; Helmchen, G.; Peters,
E.-M.; Peters, K.; von Schmering, H.-G. Angew. Chem., Int. Ed. Engl. 1984,
23, 898. (g) Sankhavasi, W.; Yamamoto, M.; Kohmoto, S.; Yamada, K.
Bull. Chem. Soc. Jpn. 1991, 64, 1425. (h) Drewes, S. E.; Malissar, D. G.
S.; Roos, G. H. P. Chem. Ber. 1991, 124, 2913.
(3) Ghosh, A. K.; Duong, T. T.; McKee, S. P. J. Chem. Soc., Chem.
Commun. 1992, 1673.
(4) (a) Meyers, A. I.; Yamamoto, Y. Tetrahedron 1984, 40, 2309. (b)
Helmchen, G.; Leikauf, U.; Taufer-Knopfel, I. Angew. Chem., Int. Ed. Engl.
1985, 24, 874. (c) Gennari, C.; Bernardi, A.; Colombo, L.; Scolastico, C.
J. Am. Chem. Soc. 1985, 107, 5812. (d) Palazzi, C.; Colombo, L.; Gennari,
C. Tetrahedron Lett. 1986, 27, 1735. (e) Oppolzer, W.; Marco-Contelles,
J.; HelV. Chim. Acta 1986, 69, 1699. (f) Masamune, S.; Sato, T.; Kim, B.
M.; Wollman, T. A. J. Am. Chem. Soc. 1986, 108, 8279. (g) Danda, H.;
Hansen, M. M.; Heathcock, C. H. J. Org. Chem. 1990, 55, 173. (h) Corey,
E. J.; Kim, S. S. J. Am. Chem. Soc. 1990, 112, 4976. (i) Corey, E. J.; Kim,
S. S. Tetrahedron Lett. 1990, 31, 3715. (j) Meyers, A. G.; Widdowson, K.
L. J. Am. Chem. Soc. 1990, 112, 9672. (k) Duthaler, R. O.; Herold, P.;
Helfer, S.-W.; Riediker, M. HelV. Chim. Acta. 1990, 73, 659. (l) Walker,
M. A.; Heathcock, C. H. J. Org. Chem. 1991, 56, 5747. (m) Oppolzer,
W.; Lienard, P. Tetrahedron Lett. 1993, 34, 4321. (m) Gennari, C.;
Moresca, D.; Vieth, S.; Vulpetti, A. Angew. Chem., Int. Ed. Engl. 1993,
32, 1618. (n) Paterson, I.; Wren, S. P. J. Chem. Soc., Chem. Commun.
1993, 1790 and references cited therein.
(6) While alkyl esters are known7a to be not enolizable with TiCl4/Et3N,
formation of titanium enolate from esters through internal chelation with
the sulfonamido group has been reported; see: Xiang, Y.; Olivier, E.;
Ouimet, N.; Tetrahedron Lett. 1992, 33, 457.
(7) For formation of other titanium enolates from N-propionyloxazoli-
dinones, see: (a) Evans, D. A.; Urpi, F.; Somers, T. C.; Clark, J. S.;
Bilodeau, M. T. J. Am. Chem. Soc. 1990, 112, 8215. (b) Evans, D. A.;
Rieger, D. L.; Bilodeau, M. T.; Urpi, F. J. Am. Chem. Soc. 1991, 113,
1047. (c) Bonner, M. P.; Thornton, E. R. J. Am. Chem. Soc. 1991, 113,
1299. (d) Siegel, C.; Thornton, E. R. J. Am. Chem. Soc. 1989, 111, 5722.
(e) Siegel, C.; Thornton, E. R. Tetrahedron Lett. 1986, 27, 457.
(8) 1H-NMR (CDCl3, 400 MHz): δ 7.78 (d, 2 H, J ) 8.3 Hz), 7.16-
7.35 (m, 6 H), 5.55 (d, 1 H, J ) 5.7 Hz), 4.67 (q, 1 H, J ) 7 Hz), 4.28 (m,
1 H), 3.05-3.14 (m, 2 H), 2.50 (s, 3 H), 1.51 (d, 3 H, J ) 7.0 Hz).
(5) Available from Aldrich Chemical Co., Milwaukee, WI and Sepracor
Inc., Marlborough, MA 01752.
0002-7863/96/1518-2527$12.00/0 © 1996 American Chemical Society