10.1002/anie.202012299
Angewandte Chemie International Edition
RESEARCH ARTICLE
Danishefsky, G. O. Jones, K. N. Houk, J. Am. Chem. Soc. 2007, 129,
645; c) K. Ishihara, M. Fushimi, J. Am. Chem. Soc. 2008, 130, 7532; d)
J.-P. Krieger, G. Ricci, D. Lesuisse, C. Meyer, J. Cossy, Angew. Chem.,
Int. Ed. 2014, 53, 8705; e) K. B. Hamal, R. Bam, W. A. Chalifoux, Synlett
2016, 27, 2161; f) M. Hatano, T. Sakamoto, T. Mizuno, Y. Goto, K.
Ishihara, J. Am. Chem. Soc. 2018, 140, 16253.
allene with the arene ring. The exceptionally low activation energy
for the cycloaddition could be rationalized by counter-intuitive
favourable dispersive interactions in the transition state,
combined with a weaker effect of the carboxy substituent. The
obtained products were transformed into useful building blocks
and preliminary results indicated that other polycyclic ring
systems could also be accessed using this strategy. Importantly,
this methodology allows straightforward access to versatile diene
ligands for rhodium catalysis with easy variation of the
substituents. Pseudo C2-symmetric ligand 6p could be used in
the enantioselective addition of phenyl boronic acid (21) to
cyclohexenone (22) with 87% enantioselectivity. Our future work
will focus on catalysis of the cycloaddition step with the goal of
[12] F. Fringuelli, A. Taticchi, Dienes in the Diels-Alder Reaction, Wiley, 1990.
[13] G. Himbert, L. Henn, Angew. Chem., Int. Ed. 1982, 21, 620.
[14] a) G. Himbert, D. Fink, Tetrahedron Lett. 1985, 26, 4363; b) G. Himbert,
D. Fink, M. Stürm, Z. Naturforsch. B; Chem. Sci. 1994, 49, 63.
[15] a) L. Henn, G. Himbert, K. Diehl, M. Kaftory, Chem. Ber. 1986, 119, 1953;
b) G. Himbert, K. Diehl, H.-J. Schlindwein, Chem. Ber. 1986, 119, 3227;
c) K. Diehl, G. Himbert, Chem. Ber. 1986, 119, 3812; d) H. ‐ J.
Schlindwein, K. Diehl, G. Himbert, Chem. Ber. 1989, 122, 577; e) G.
Himbert, H.-J. Schlindwein, Z. Naturforsch. B; Chem. Sci. 1992, 47,
1785; d) G. Himbert, D. Fink, J. Org. Chem. 1996, 338, 355.
[16] G. Himbert, D. Fink, J. Prakt. Chem. 1994, 336, 654.
[17] a) L. S. Trifonov, A. S. Orahovats, Helv. Chim. Acta 1986, 69, 1585; b) L.
S. Trifonov, A. S. Orahovats, Helv. Chim. Acta 1987, 70, 1732; c) L. S.
Trifonov, A. S. Orahovats, Helv. Chim. Acta 1987, 70, 262; d) L. S.
Trifonov, A. S. Orahovats, Helv. Chim. Acta 1989, 72, 59.
[18] G. Himbert, M. Ruppmich, H. Knöringer, J. Chinese Chem. Soc. 2003,
50, 143.
developing an enantioselective reaction for
a
more
straightforward access to enantioenriched chiral ligands, and
further study the reactivity of this new type of easily accessible
"push-pull" allenes.
Acknowledgements
[19] L. S. Trifonov, S. D. Simova, A. S. Orahovats, Tetrahedron Lett. 1987,
28, 3391.
We thank the European Research Council (ERC; Starting Grant
iTools4MC, number 334840) the Swiss National Science
Foundation (Grant No. 200020_182798) and the EPFL for
financial support. MDW acknowledges Prof. C. Corminboeuf for
financial support and the Laboratory for Computational Molecular
Design for providing computational resources.
[20] Y. Schmidt, J. K. Lam, H. V. Pham, K. N. Houk, C. D. Vanderwal, J. Am.
Chem. Soc. 2013, 135, 7339.
[21] G. Cheng, X. He, L. Tian, J. Chen, C. Li, X. Jia, J. Li, J. Org. Chem. 2015,
80, 11100.
[22] For the only example of application of the Himbert reaction in total
synthesis, see: J. K. Lam, Y. Schmidt, C. D. Vanderwal, Org. Lett. 2012,
14, 5566.
[23] X. Mo, B. Chen, G. Zhang, Angew. Chem., Int. Ed. 2020, DOI:
10.1002/anie.202000860.
Keywords: [4+2] cycloaddition • alkynes • diene ligands •
hypervalent iodine reagents • diazo compounds
[24] U. Streit, F. Birbaum, A. Quattropani, C. G. Bochet, J. Org. Chem. 2013,
78, 6890.
[25] a) J. Waser, Top. Curr. Chem. 2015, 373, 187; b) Y. Li, D. P. Hari, M. V.
Vita, J. Waser, Angew. Chem., Int. Ed. 2016, 55, 4436.
[1]
[2]
J. Rodriguez, D. Bonne, Stereoselective Multiple Bond-Forming
Transformations in Organic Synthesis, John Wiley & Sons, Inc, Hoboken,
NJ, USA, 2015.
[26] a) D. P. Hari, J. Waser, J. Am. Chem. Soc. 2016, 138, 2190; b) D. P. Hari,
J. Waser, J. Am. Chem. Soc. 2017, 139, 8420.
a) W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Wiley-
VCH Verlag GmbH, Weinheim, FRG, 1990; b) S. Kobayashi, K. A.
Jørgensen, Eds., Cycloaddition Reactions in Organic Synthesis, Wiley-
VCH Verlag GmbH, Weinheim, FRG, 2001; c) N. Nishiwaki, Methods and
Applications of Cycloaddition Reactions in Organic Syntheses, Wiley,
2014.
[27] There are no reports of carboxy-substituted allene esters and only rare
reports of alkoxy substituted allene esters: a) M. J. Sleeman, G. V.
Meehan, Tetrahedron Lett. 1989, 30, 3345; b) Y. Nagao, K. Kim, S. Sano,
H. Kakegawa, W. S. Lee, H. Shimizu, M. Shiro, N. Katunuma,
Tetrahedron Lett. 1996, 37, 861. Simple alkoxy-substituted allenes have
been more often used: c) R. Zimmer, H.-U. Reissig, Angew. Chem., Int.
Ed. 1988, 27, 1518; d) V. M. Schmiedel, H. U. Reissig, Curr. Org. Chem.
2019, 23, 2976.
[3]
a) G. Brieger, J. N. Bennett, Chem. Rev. 1980, 80, 63; b) K. C. Nicolaou,
S. A. Snyder, T. Montagnon, G. Vassilikogiannakis, Angew. Chem., Int.
Ed. 2002, 41, 1668.
[28] The structure of 6r was confirmed by X-ray analysis (available at the
Cambridge Crystallographic Centre, CCDC number 1848760).
[29] The structure of the diastereoisomers was assigned in analogy to the
work in ref 20 and 22.
[4]
[5]
K. Takao, R. Munakata, K. Tadano, Chem. Rev. 2005, 105, 4779.
a) N. Zydziak, B. Yameen, C. Barner-Kowollik, Polym. Chem. 2013, 4,
4072; b) W. Binder, C. Kluger, Curr. Org. Chem. 2006, 10, 1791.
L. C. Bouchez, M. Rusch, M.-H. Larraufie, Curr. Org. Chem. 2016, 20,
2358.
[6]
[7]
[8]
[9]
[30] In the case of less reactive substituted alkynes, the presence of the tert-
butyl groups was necessary for the success of the cycloaddition.
[31] See Supporting Information for details on the optimization of the reaction
conditions.
F. Fringuelli, A. Taticchi, The Diels - Alder Reaction: Selected Practical
Methods, John Wiley & Sons, Ltd, Chichester, UK, 2002.
D. W. Thomas, H. Achenbach, K. Biemann, J. Am. Chem. Soc. 1966, 88,
3423.
[32] The structure of 6r was confirmed by X-ray analysis (available at the
Cambridge Crystallographic Centre, CCDC number 1848773).
[33] The reaction with alkyl-EBXs required 50 °C to form allenes, which
undergo spontaneous cyclization to give the corresponding Himbert
products.
M. Connock, A. Juarez-Garcia, S. Jowett, E. Frew, Z. Liu, R. Taylor, A.
Fry-Smith, E. Day, N. Lintzeris, T. Roberts, A. Burls, R. S. Taylor, Health
Technology Assessment 2007, 11, 1-171.
[10] a) C. Fischer, C. Defieber, T. Suzuki, E. M. Carreira, J. Am. Chem. Soc.
2004, 126, 1628; b) C. Defieber, H. Grutzmacher, E. M. Carreira, Angew.
Chem., Int. Ed. 2008, 47, 4482; c) N. Tokunaga, Y. Otomaru, K. Okamoto,
K. Ueyama, R. Shintani, T. Hayashi, J. Am. Chem. Soc. 2004, 126,
13584; d) Y. Otomaru, K. Okamoto, R. Shintani, T. Hayashi, J. Org.
Chem 2005, 70, 2503; e) K. Okamoto, T. Hayashi, V. H. Rawal, Chem.
Commun. 2009, 4815.
[34] Enantionenriched 5r was obtained following our previously published
methodology, ref. 25b.
[35] F. M. Bickelhaupt, K. N. Houk, Angew. Chem., Int. Ed. 2017, 56, 10070.
And references cited therein.
[36] The structure of 15 was confirmed by X-ray analysis (available at the
Cambridge Crystallographic Centre, CCDC number 1850113).
[37] Available at the Cambridge Crystallographic Centre, CCDC number
1945514.
[11] Selected examples: a) N. Kumar, M. Kiuchi, J. A. Tallarico, S. L.
Schreiber, Org. Lett. 2005, 7, 2535; b) M. Dai, D. Sarlah, M. Yu, S. J.
6
This article is protected by copyright. All rights reserved.