444
J. Bure´s, J. Vilarrasa / Tetrahedron Letters 49 (2008) 441–444
Petrini, M. Chem. Rev. 2005, 105, 933; (d) Ono, N. The Nitro Group in
reagent combination had been used in the nucleoside field to
substitute PhS for OH groups: (c) Nakagawa, I.; Hata, T. Tetrahedron
Lett. 1975, 17, 1409; for the conversion of ketoximes to thioimines
and/or imines with the same reagents, see: (d) Lukin, K. A.;
Narayanan, B. A. Tetrahedron 2002, 58, 215.
Organic Synthesis; Wiley-VCH: New York, 2001; (e) Oriyama, T.;
Aoyagi, M.; Iwanami, K. Chem. Lett. 2007, 36, 612; (f) Choudary, B.
M.; Ranganath, K. V. S.; Pal, U.; Kantam, M. L.; Sreedhar, B. J. Am.
Chem. Soc. 2005, 127, 13167; for reviews of aza-Henry reactions, see:
(g) Vilaivan, T.; Bhanthumnavin, W.; Sritana-Anant, Y. Curr. Org.
Chem. 2005, 9, 1315; (h) Westermann, B. Angew. Chem., Int. Ed. 2003,
42, 151.
10. Other commercially available or readily prepared potential activators
were examined: PhSSPh, N-(phenylsulfenyl)phthalimide (PhthN-SPh),
cyclic disulfides naphtho[1,8-cd][1,2]dithiole and dibenzo[1,2]dithiine,
tBuSStBu, 2,20-dipyridyl diselenide (PySeSePy), PhSeCl, I2, CBr4 and
diethyl azodicarboxylate (DEAD). The first two were as efficient as
2. Review of asymmetric additions to nitroalkenes: (a) Berner, O. M.;
Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 1877; for
cycloadditions, see: (b) Denmark, S. E.; Baiazitov, R. Y. J. Org.
Chem. 2006, 71, 593; and references cited therein.
tBuC6H4SSC6H4 Bu but their use is accompanied by the bad odor of
t
PhSH during the workup. PySeSePy was slower (in the first step, the
nitro-to-oxime conversion). The other additives did not work at all.
´
3. (a) Bartra, M.; Romea, P.; Urpı, F.; Vilarrasa, J. Tetrahedron 1990,
`
46, 587; from optically active nitroalkanes, see: (b) Czekelius, C.;
Carreira, E. Angew. Chem., Int. Ed. 2005, 44, 612.
4. Reviews: (a) Pellissier, H. Tetrahedron 2007, 63, 3235; (b) Harju, K.;
Yli-Kauhaluoma, J. Mol. Div. 2005, 9, 187; (c) Jaeger, V.; Colinas, P.
A. Chem. Heterocycl. Comp. 2002, 59, 361.
11. Reviews: (a) Corsaro, A.; Chiacchio, U.; Pistara, V. Synthesis 2001,
1903; (b) Hajipour, A. R.; Khoee, S.; Ruoho, A. E. Org. Prepn.
Proced. Int. 2003, 35, 527; also see the references cited by the very
recent, illustrative papers that follow: (c) Gupta, P. K.; Manral, L.;
Ganesan, K. Synthesis 2007, 1930; (d) Ali, M. H.; Greene, S.; Wiggin,
C. J.; Khan, S. Synth. Commun. 2006, 36, 1761; (e) Mart´ın, M.;
5. Fessard, T.; Motoyoshi, H.; Carreira, E. Angew. Chem., Int. Ed. 2007,
46, 2078; and references cited therein.
´
´
Martınez, G.; Urpı, F.; Vilarrasa, J. Tetrahedron Lett. 2004, 45, 5559.
12. We obtained it by oxidation of commercially available 4-tert-
butylbenzenethiol with air: (a) Jossi, A. V.; Bhusare, S.; Baidossi,
M.; Qafisheh, N.; Sasson, Y. Tetrahedron Lett. 2005, 46, 3583; also by
oxidation with 200 mol % of TEMPO according to, for example, (b)
Carloni, P.; Damiani, E.; Iacussi, M.; Greci, L.; Stipa, P.; Cauzi, D.;
Rizzoli, C.; Sgarabotto, P. Tetrahedron 1995, 51, 12445; we have also
´
6. (a) Urpı, F.; Vilarrasa, J. Tetrahedron Lett. 1990, 31, 7497; (b)
Mendler, B.; Kazmaier, U. Org. Lett. 2005, 7, 1715.
7. For very recent reviews of the original Nef reaction (nitronates heated
in strong acids), McMurry’s conditions (TiCl3/HCl/NH4OAc/D) and
related reactions, see: (a) Ballini, R.; Petrini, M. Tetrahedron 2004, 60,
1017; (b) Adams, J. P. J. Chem. Soc., Perkin Trans. 1 2002, 2586; (c)
Petrus, L.; Petrusova, M.; Pham-Huu, D.-P.; Lattova, E.; Pribulova,
B.; Turjan, J. Monatsh. Chem. 2002, 133, 383; recent papers: (d) Hwu,
J. R.; Josephrajan, T.; Tsay, S. Synthesis 2006, 3305 (KH, TMSCl/D);
(e) Ballini, R.; Fiorini, D.; Maggi, R.; Oro, C.; Palmieri, A.; Sartori,
G. Synlett 2006, 1849 (bicyclic guanidine, 60 °C); (f) Pradhan, P. K.;
Dey, S.; Jaisankar, P.; Giri, V. S. Synth. Commun. 2005, 35, 913 (Fe/
aq HCl/MeOH/D); (g) Gissot, A.; N’Gouela, S.; Matt, C.; Wagner,
A.; Mioskowski, C. J. Org. Chem. 2004, 69, 8997 (NaNO2, DMSO,
ca. 65 °C); and references cited therein; (h) Ballini, R.; Bosica, G.;
Fiorini, D.; Petrini, M. Tetrahedron Lett. 2002, 43, 5233 (DBU,
60 °C); for a mild oxidative method that we have utilized several times
successfully, see: (i) Ceccherelli, P.; Curini, M.; Marcotullio, M. C.;
Epifano, F.; Rosati, O. Synth. Commun. 1998, 28, 3057 (OxoneÒ,
2KHSO5ꢁKHSO4ꢁK2SO4, buffered alkaline pH, 20 °C).
t
performed experiments by adding directly TEMPO and BuC6H4SH
to the reaction flask with phosphine and the nitro compound, with the
same final yields.
13. We recommend the use of tBuC6H4SH/tBuC6H4SSC6 H4 Bu to avoid
t
the stench of benzenethiol (thiophenol, PhSH) and other relatively
volatile ArSH. The relative odors of thiols have been evaluated: (a)
Nishide, K.; Ohsugi, S.; Miyamoto, T.; Kumar, K.; Node, M.
Monatsh. Chem. 2004, 135, 189; for bis-TMS derivatives, see: (b)
Patra, P. K.; Shanmugasundaram, K.; Matoba, M.; Nishide, K.;
Kajimoto, T.; Node, M. Synthesis 2005, 447.
14. (a) Moreover, the phosphonium oximates of 1j are prone to
fragmentation (the concomitant Beckmann fragmentation that
affords nitriles and lowers the yields of the desired product, 2j). We
also observed such a fragmentation in preparing N-(phenylsulfe-
nyl)ketimines from ketoximes, with the oxime related to 1j. See: (b)
8. Review of trialkylphosphines: Valentine, D. H.; Hillhouse, J. H.
Synthesis 2003, 317.
´
Bures, J.; Isart, C.; Vilarrasa, J. Org. Lett. 2007, 9, 4635.
9. (a) Barton, D. H. R.; Motherwell, W. B.; Simon, E. S.; Zard, S. Z. J.
Chem. Soc., Perkin Trans. 1 1986, 2243; also see: (b) Barton, D. H. R.;
Motherwell, W. B.; Zard, S. Z. Tetrahedron Lett. 1984, 25, 3707; this
15. With the 0.2:0.2:2.5 A/B/PMe3 ratio, the ketone yields were P95%
within 3–5 h.
16. Risley, J. M.; Van Etten, R. L. J. Am. Chem. Soc. 1980, 102, 4609.