2190
W. Lubisch et al. / Bioorg. Med. Chem. Lett. 10 (2000) 2187±2191
Table 2.
tyrosine kinase pp60src. Finally, we have shown that
two calpain inhibitors are able to suppress seizures
induced by NMDA which also indicates that these
inhibitors penetrate into brain when administered sys-
temically. Altogether, the piperidines represent novel
calpain inhibitors which are suitable tools to investigate
the importance of calpain in animals.
Calpaina Cathepsin Ba pp60srcb
NMDA
Ki/mM
Ki/mM
IC50/mM convulsionsc
ED50/mg/kg
11f
11j
0.030
0.009
0.015
7.300
3.200
0.02518
1.8
ntd
0.7
1.3
1.0
nt
MDL 28170 1
aThe values of the inhibition constants Ki are mean values of two or
more independent experiments.
Acknowledgements
bInhibition of the tyrosine kinase pp60src degradation.
cInhibition of the lethal convulsions induced by NMDA in mice.
dNot tested.
We thank A. Finck, F. Regner and M. Vierling for
supporting chemical synthesis and biological testings
and J. Sadowski for supporting molecular modeling
experiments.
in the mM range. Thus, 11f and 11j represent potent
calpain inhibitors which show a >100-fold selectivity
over a closely related protease.
References and Notes
Since calpain is an intracellular enzyme, inhibitors have
to be evaluated for their ability to penetrate into cells.
This could be estimated in cellular assays in which inhi-
bitors block the intracellular calpain mediated protein
degradation. In platelets, calpain which was activated
by the calcium ionophore A23187 cleaves the tyrosine
kinase pp60src in a speci®c manner.19 Calpain inhibitors
block this degradation and, indeed, MDL 28170 and the
tested piperidine 11f inhibit this degradation with IC50s
of 0.7 and 1.8 mM, respectively, indicating that both
compounds penetrate into cells and have comparable
potencies (Table 2).
1. Sorimachi, H.; Ishiura, S.; Suzuki, K. Biochem. J. 1997,
328, 721.
2. Squier, M. K. T.; Cohen, J. J. Death and Dierentiation
1996, 3, 275.
3. Wang, K. K. W.; Yuen, P. W. Adv. Pharmacol. 1997, 37,
117. Wang, K. K. W.; Yuen, P. W. Trend Pharmacol. Sci.
1994, 15, 412.
4. Markgraf, C. G.; Velayo, N. L.; Johnson, M. P.; McCarty,
D. R.; Medhi, S.; Koehl, J. R.; Chmielewski, P. A.; Linnik, M.
D. Stroke 1998, 29, 152. Bartus, R. T.; Hayward, N. J.; Elliott,
P. J.; Sawyer, S. D.; Baker, K. L.; Dean, R. L.; Akiyama, A.;
Straub, J. A.; Harbenson, S. L.; Li, Z. Z.; Powers, J. C. Stroke
1994, 25, 2265.
5. Iwamoto, H.; Miura, T.; Okamura, T.; Shirakawa, K.;
Iwatate, M.; Kawamura, S.; Tatsuno, H.; Ikeda, Y.; Matsu-
zaki, M. J. Cardiovasc. Pharmacol. 1999, 33, 580. Urthaler, F.;
Wolkowicz, P. E.; Digerness, S. B.; Harris, K. D.; Walker, A.
A. Cardiovasc. Res. 1997, 35, 60.
6. Banik, N. L.; Shields, D. C.; Ray, S.; Davis, B.; Matzelle,
D.; Wilford, G.; Hogan, E. L. Ann. NY Acad. Sci. 1998, 844,
131.
7. Baghiguian, S.; Martin, M.; Richard, I.; Pons, F.; Astier,
C.; Bourg, N.; Hay, R. T.; Chemaly, R.; Halaby, G.; Loiselet,
J.; Anderson, L. V. B.; De Munain, A. L.; Fardeau, M.;
Mangeat, P.; Beckmann, J. S.; Lefranc, G. Nature Medicine
1999, 5, 503.
8. Chatterjee, S. Drugs of the Future 1998, 23, 1217.
9. Wells, G. J.; Bihovsky, R. Exp. Opin. Ther. Patents 1998, 8,
1707.
10. Chatterjee, S.; Gu, Z. Q.; Dunn, D.; Tao, M.; Josef, K.;
Tripathy, R.; Bihovsky, R.; Senadhi, S. E.; O'Kane, T. M.;
McKenna, B. A.; Mallya, S.; Ator, M. A.; Bozyczko-Coyne,
D.; Simon, R.; Mallamo, J. P. J. Med. Chem. 1998, 41, 2663.
Chatterjee, S.; Dunn, D.; Tao, M.; Wells, G.; Gu, Z. Q.;
Bihovsky, R.; Ator, M. A.; Siman, R.; Mallamo, J. P. Bioorg.
Med. Chem. Lett. 1999, 9, 2371. Chatterjee, S.; Iqbal, M.;
Mallya, S.; Senadhi, S. E.; O'Kane, T. M.; McKenna, B. A.;
Bozyczko-Coyne, D.; Kauer, J. C.; Simon, R.; Mallamo, J. P.
Bioorg. Med. Chem. 1998, 6, 509.
11. Tripathy, R.; Gu, Z. Q.; Dunn, D.; Senadhi, S. E.; Ator,
M. A.; Chatterjee, S. Bioorg. Med. Chem. Lett. 1998, 8, 2647.
12. Li, Z. Z.; Patil, G. S.; Golubski, Z. E.; Hori, H.; Tehrani,
K.; Foreman, J. E.; Eveleth, D. D.; Bartus, R. T.; Powers, J.
C. J. Med. Chem. 1993, 36, 3472.
It had been reported that calpain inhibitors attentuate
cellular toxicity induced by glutamate receptors agonists
such as AMPA and glutamate.20 This has raised the
question whether calpain inhibitors also modify the
glutamate receptor mediated eects in vivo. Therefore,
we have evaluated the ability of calpain inhibitors to
suppress convulsion induced by the glutamate receptor
subtype agonist N-methyl-d-aspartic acid (NMDA) in
vivo, a model which is generally used to characterize
glutamate receptor antagonists.21 Both piperidines 11f
and 11g were tested in this model and, remarkably, both
compounds exert potent anticonvulsive properties (see
Table 2).22 Their ED50s were determined to be 1.3 mg/
kg and 1.0 mg/kg which are rather low dosages in this
model even compared with many NMDA antagonists.
Nevertheless, whether calpain inhibition is responsible
for this anticonvulsive property is not conclusive but, so
far tested, there are no hints that these compounds act
via other molecular targets such as glutamate receptors
(data not shown). On the other hand, this result may
indicate that these calpain inhibitors reached sucient
levels in brain even when administered systemically
which makes these compounds suitable as tools for fur-
ther testing.
In summary, we have outlined the synthesis and a brief
SAR of novel piperidines as m-calpain inhibitors. In
particular, the piperidines 11f and 11j both derived from
ketoamides are potent calpain inhibitors and disclose
high selectivity versus the closely related cysteine pro-
tease cathepsin B. It was also shown that 11f is eective
in inhibiting the calpain mediated degradation of the
13. Harbeson, S. L.; Abelleira, S. M.; Akiyama, A.; Barrett,
R., III; Carroll, R. M.; Straub, J. A.; Tkacz, J. N.; Wu, C.;
Musso, G. F. J. Med. Chem. 1994, 37, 2918.
14. Sasaki, T.; Kikuchi, T.; Yumoto, N.; Yoshimura, N.;
Murachi, T. J. Biol. Chem. 1984, 259, 12489.