NATuRe CHeMISTRy
Articles
7. Dunbar, K. L., Scharf, D. H., Litomska, A. & Hertweck, C. Enzymatic carbon–
sulfur bond formation in natural product biosynthesis. Chem. Rev. 117,
5521–5577 (2017).
35. Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K. & MacMillan, D.
W. C. Photosensitized, energy transfer-mediated organometallic catalysis
through electronically excited nickel(II). Science 355, 380–385 (2017).
36. Hopkinson, M. N., Gómez-Suárez, A., Teders, M., Sahoo, B. & Glorius, F.
Accelerated discovery in photocatalysis using a mechanism-based screening
method. Angew. Chem. Int. Ed. 55, 4361–4366 (2016).
37. Teders, M., Gómez-Suárez, A., Pitzer, L., Hopkinson, M. N. & Glorius, F.
Diverse visible-light-promoted functionalizations of benzotriazoles inspired
by mechanism-based luminescence screening. Angew. Chem. Int. Ed. 56,
902–906 (2017).
38. Benati, L., Montevecchi, P. C. & Spagnolo, P. Free-radical reactions of
benzenethiol and diphenyl disulphide with alkynes. Chemical reactivity of
intermediate 2-(phenylthio)vinyl radicals. J. Chem. Soc. Perkin Trans. 1,
2103–2109 (1991).
39. Collins, K. D. & Glorius, F. A robustness screen for the rapid assessment of
chemical reactions. Nat. Chem. 5, 597–601 (2013).
8. Kolberg, M., Strand, K. R., Graf, P. & Andersson, K. K. Structure, function,
and mechanism of ribonucleotide reductases. Biochim. Biophys. Acta 1699,
1–34 (2004).
9. Fraústo da Silva, J. J. R. & Williams, R. J. P. Te Biological Chemistry of the
Elements (Oxford Univ. Press: New York, NY, 2011).
10. Damani, L. A. Sulphur-Containing Drugs and Related Organic Compounds
(Wiley: Chichester, 1989).
11. Dénès, F., Pichowicz, M., Povie, G. & Renaud, P. Tiyl radicals in organic
synthesis. Chem. Rev. 114, 2587–2693 (2014).
12. Posner, T. Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber
die Addition von Mercaptanen an ungesättigte Kohlenwasserstofe. Ber. Dtsch.
Chem. Ges. 38, 646–657 (1905).
13. Hoyle, C. E. & Bowman, C. N. Tiol–ene click chemistry. Angew. Chem. Int.
Ed. 49, 1540–1573 (2010).
40. Gensch, T., Teders, M. & Glorius, F. Approach to comparing the functional
group tolerance of reactions. J. Org. Chem. 82, 9154–9159 (2017).
41. Snyder, J. J., Tise, F. P., Davis, R. D. & Kropp, P. J. Photochemistry of alkenes. 7.
E–Z isomerization of alkenes sensitized with benzene and derivatives.
J. Org. Chem. 46, 3609–3611 (1981).
14. Stenzel, M. H. Bioconjugation using thiols: old chemistry rediscovered
to connect polymers with nature’s building blocks. ACS Macro Lett. 2,
14–18 (2013).
15. van Dijk, M., Rijkers, D. T. S., Liskamp, R. M. J., van Nostrum, C. F. &
Hennink, W. E. Synthesis and applications of biomedical and pharmaceutical
polymers via click chemistry methodologies. Bioconjug. Chem. 20,
2001–2016 (2009).
42. Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced
hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17,
5712–5719 (2005).
16. Huynh, V. T., Chen, G., de Souza, P. & Stenzel, M. H. Tiol–yne and
thiol–ene ‘click’ chemistry as a tool for a variety of platinum drug delivery
carriers, from statistical copolymers to crosslinked micelles.
Biomacromolecules 12, 1738–1751 (2011).
17. Lowe, A. B. Tiol–ene ‘click’ reactions and recent applications in polymer and
materials synthesis. Polym. Chem. 1, 17–36 (2010).
18. Tyson, E. L., Ament, M. S. & Yoon, T. P. Transition metal photoredox
catalysis of radical thiol–ene reactions. J. Org. Chem. 78, 2046–2050 (2013).
19. Tyson, E. L., Niemeyer, Z. L. & Yoon, T. P. Redox mediators in visible light
photocatalysis: photocatalytic radical thiol–ene additions. J. Org. Chem. 79,
1427–1436 (2014).
20. Keylor, M. H., Park, J. E., Wallentin, C.-J. & Stephenson, C. R. J.
Photocatalytic initiation of thiol–ene reactions: synthesis of thiomorpholin-3-
ones. Tetrahedron 70, 4264–4269 (2014).
21. Chen, Y., Kamlet, A. S., Steinman, J. B. & Liu, D. R. A biomolecule-
compatible visible-light-induced azide reduction from a DNA-encoded
reaction-discovery system. Nat. Chem. 3, 146–153 (2011).
22. Huang, H., Zhang, G., Gong, L., Zhang, S. & Chen, Y. Visible-light-induced
chemoselective deboronative alkynylation under biomolecule-compatible
conditions. J. Am. Chem. Soc. 136, 2280–2283 (2014).
23. Nair, D. P. et al. Te thiol–Michael addition click reaction: a powerful and
widely used tool in materials chemistry. Chem. Mater. 26, 724–744 (2014).
24. Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds
(CRC Press: Boca Raton, FL, 2003).
25. Zhao, J., Wu, W., Sun, J. & Guo, S. Triplet photosensitizers: from molecular
design to applications. Chem. Soc. Rev. 42, 5323–5351 (2013).
26. Atta, M. et al. Te methylthiolation reaction mediated by the radical-SAM
enzymes. Biochim. Biophys. Acta 1824, 1223–1230 (2012).
27. Stillwell, W. G. Methylthiolation: a new pathway of drug metabolism.
Trends Pharmacol. Sci. 2, 250–252 (1981).
43. Murov, S. L., Carmichael, I. & Hug, G. L. Handbook of Photochemistry 2nd
edition (Marcel Dekker, New York, 1993).
44. Guldi, D. M., Neta, P. & Asmus, K.-D. Electron-transfer reactions between C60
and radical ions of metaloporphyrins and arenes. J. Phys. Chem. 98,
4617–4621 (1994).
45. Mojr, V. et al. Tailoring favins for visible light photocatalysis: organocatalytic
[2+2] cycloadditions mediated by a favin derivative and visible light. Chem.
Commun. 51, 12036–12039 (2015).
46. Feng, M., Tang, B., Liang, S. H. & Jiang, X. Sulfur containing scafolds in
drugs: synthesis and application in medicinal chemistry. Curr. Top. Med.
Chem. 16, 1200–1216 (2016).
47. Devendar, P. & Yang, G. F. Sulfur-containing agrochemicals. Top. Curr. Chem.
375, 82 (2017).
48. Shieh, P. & Bertozzi, C. R. Design strategies for bioorthogonal smart probes.
Org. Biomol. Chem. 12, 9307–9320 (2014).
49. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse
chemical function from a few good reactions. Angew. Chem. Int. Ed. 40,
2004–2021 (2001).
Acknowledgements
The authors thank K. Gottschalk, L. Roling, S. Hüwel, W. Dörner and S. Wulff for
experimental and technical assistance and R. Honeker, L. Candish and Z. Nairoukh
for helpful discussions (all WWU Münster). This work was supported by the Deutsche
Forschungsgemeinschaft (Leibniz Award to F.G. and RE2796/6-1 to A.R.) and by the
Fonds der Chemischen Industrie (doctoral fellowship to L.A. and Dozentenpreis to
A.R.). M.T. thanks SusChemSys 2.0 for general support.
Author contributions
M.T., F.S.-K., A.G.-S., R.K. and F.G. designed, performed and analysed the catalytic
and mechanistic experiments. C.H., A.K. and D.G. designed, performed and analysed
transient absorption data and related spectroscopic mechanism studies. L.A. and M.T.
designed and performed the biocompatibility screening experiments. M.T., C.H., L.A.,
F.S.-K., A.R., D.G. and F.G. prepared the manuscript, with contributions
from all authors.
28. Ciamician, G. Te photochemistry of the future. Science 36, 385–394 (1912).
29. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox
catalysis with transition metal complexes: applications in organic synthesis.
Chem. Rev. 113, 5322–5363 (2013).
30. Twilton, J. et al. Te merger of transition metal and photocatalysis. Nat. Rev.
Chem. 1, 0052 (2017).
31. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in
photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).
32. Metternich, J. B. & Gilmour, R. Photocatalytic E→Z isomerization of alkenes.
Synlett 27, 2541–2552 (2016).
Additional information
33. Lu, Z. & Yoon, T. P. Visible light photocatalysis of [2+2] styrene cycloadditions
by energy transfer. Angew. Chem. Int. Ed. 51, 10329–10332 (2012).
34. Blum, T. R., Miller, Z. D., Bates, D. M., Guzei, I. A. & Yoon, T. P.
Enantioselective photochemistry through Lewis acid-catalyzed triplet energy
transfer. Science 354, 1391–1395 (2016).
Correspondence and requests for materials should be addressed to D.G. or F.G.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.