Notes
J . Org. Chem., Vol. 61, No. 11, 1996 3895
13C NMR (78.5 MHz, CDCl3) δ 26.9, 51.4, 96.9, 127.3, 128.6,
129.9, 130.7, 141.2, 161.1, 199.6; IR 1705 (acetyl CdO), 1660
(amide CdO); MS 233 (M+, 44), 191 (M+ - OdCdCH2+, 100);
HRMS for C12H11NO2S calcd 233.0511, found 233.05213. Anal.
Calcd for C12H11NO2S: C, 61.8; H, 4.75; N, 6.00. Found: C,
61.99; H, 4.71; N, 6.00.
Sch em e 1
2-Acetyl-4-(2-m eth ylph en yl)-2H-1,4-th iazin -3(4H)-on e (2b),
1
a mixture of A isomer and B isomer (10:8): isomer A, H NMR
(300 MHz, CDCl3) δ 2.20 (s, 3H), 2.40 (s, 3H), 4.13 (d, 1H, J )
1.8), 5.55 (dd, 1H, J ) 1.8, 7.2), 6.28 (d, 1H, J ) 7.2), 7.26-7.31
1
(m, 4H); isomer B, H NMR δ 2.36 (s, 3H), 2.41 (s, 3H), 4.21 (d,
1H, J ) 1.8), 5.57 (dd, 1H, J ) 1.8, 7.2), 6.30 (d, 1H, J ) 7.2),
7.26-7.31 (m, 4H); IR 1713 (acetyl CdO), 1670 (amide CdO);
MS 247.3 (M+), 205 (M+ - COCH2+); HRMS for C13H13NO2S
calcd 247.0667, found 247.0669.
2-Acetyl-4-(4-m eth ylph en yl)-2H-1,4-th iazin -3(4H)-on e (2c):
1H NMR (300 MHz, CDCl3) δ 2.37 (s, 3H), 2.40 (s, 3H), 4.14 (d,
1H, J ) 1.7), 5.53 (dd, 1H, J ) 1.7, 7.1), 6.40 (d, 1H, J ) 7.1),
7.22-7.27 (m, 4H); IR 1716 (acetyl CdO), 1674 (amide CdO);
HRMS for C13H13NO2S calcd 247.0667, found 247.0667.
2-Acetyl-4-(2-ch lor oph en yl)-2H-1,4-th iazin -3(4H)-on e (2d):
1H NMR (300 MHz, CDCl3) δ 2.41 (s, 3H), 4.18 (s, 1H), 5.59 (d,
1H, J ) 7.0), 6.25 (d, 1H, J ) 7.0), 7.26-7.50 (m, 4H); IR 1715
(acetyl CdO), 1662 (amide CdO); MS 267 (M+, 26), 225 (M+
-
COCH2+, 100).
2-Acetyl-4-(4-ch lor oph en yl)-2H-1,4-th iazin -3(4H)-on e (2e):
1H NMR (300 MHz, CDCl3) δ 2.40 (s, 3H), 4.13 (d, 1H, J ) 1.3),
5.57 (dd, 1H, J ) 1.3, 7.3), 6.38 (d, 1H, J ) 7.3), 7.26-7.41 (m,
4H); IR 1668 (acetyl CdO), 1662 (amide CdO); MS 267 (M+,
39), 225 (M+ - COCH2+, 100); HRMS for C12H10NO2SCl calcd
267.0121, found 267.0121.
2-Ace t yl-4-(2-m e t h oxyp h e n yl)-2H -1,4-t h ia zin -3(4H )-
on e (2f): 1H NMR (300 MHz, CDCl3) δ 2.35 (s, 3H), 3.78 (s, 3H),
4.19 (s, 1H), 5.47 (br s, 1H), 6.20 (d, 1H, J ) 7.1), 6.92-7.38 (m,
4H); IR 1712 (acetyl CdO), 1666 (amide CdO); MS 263 (M+,
26), 221 (M+ - COCH2+, 100); HRMS for C13H13NO3S calcd
263.0616, found 263.0617.
2-Ace t yl-4-(4-m e t h oxyp h e n yl)-2H -1,4-t h ia zin -3(4H )-
on e (2g): 1H NMR (300 MHz, CDCl3) δ 2.40 (s, 3H), 3.82 (s,
3H), 4.13 (d, 1H, J ) 1.8), 5.52 (dd, 1H, J ) 1.8, 7.3), 6.39 (d,
1H, J ) 7.1), 6.93-7.23 (m, 4H); IR 1718 (acetyl CdO), 1674
(amide CdO); MS 263 (M+, 11), 221 (M+ - COCH2+, 100), 134
(51), 108 (C6H5OCH3); HRMS for C13H13NO3S calcd 263.0616,
found 263.0611.
ruled out. All of these thiazin-3-ones were characterized
by their elemental analyses and spectral data (see the
Experimental Section for details). As a final confirmation
of structure, we subjected 2 to reduction by sodium
borohydride. A diastereomeric mixture of products was
obtained in an ∼3:1 ratio and had spectral features
consistent with structure 11.
An interesting phenomenon was observed for 1,4-
thiazin-3-ones 2b and 2k , which have ortho substituents
in the aromatic nucleus (example R ) Me). The products
in these cases were obtained as an ∼5:4 mixture of two
isomers, presumably rotamers, as determined by proton
NMR spectroscopy. This is possibly due to the presence
of an ortho substituent in the aromatic ring which
inhibits free N-aryl bond rotation resulting in atropiso-
mers as in the case of substituted biphenyls. However,
we have not attempted separation of these isomers.
2-Acetyl-4-(2-n itr op h en yl)-2H-1,4-th ia zin -3(4H)-on e (2h ):
1H NMR (300 MHz, CDCl3) δ 2.41 (s, 3H), 4.23 (s, 1H), 5.68 (d,
1H, J ) 7.0), 6.35 (d, 1H, J ) 7.0), 7.10-8.68 (m, 4H); IR 1717
(acetyl CdO), 1672 (amide CdO); MS 278 (M+, 36), 236 (M+
-
COCH2+, 100); HRMS for C12H10N2O4S calcd 278.0361, found
278.0361.
2-Acet yl-4-(2,6-d im et h ylp h en yl)-2H -1,4-t h ia zin -3(4H )-
1
on e (2i): H NMR (300 MHz, CDCl3) δ 2.16 and 2.36 (2s, 6H),
2.41 (s, 3H), 4.21 (d, 1H, J ) 2.0), 5.63 (dd, 1H, J ) 2.0, 7.1),
6.18 (d, 1H, J ) 7.1), 7.08-7.17 (m, 3H); IR 1668 (acetyl CdO),
1662 (amide CdO); MS 261 (M+, 43), 219 (M+ - COCH2+, 100);
HRMS for C14H15NO2S calcd 261.0824, found 261.0823.
2-Acetyl-4-(2,4-d im eth oxyp h en yl)-2H-1,4-th ia zin -3(4H)-
on e (2j): 1H NMR (300 MHz, CDCl3) δ 2.42 (s, 3H), 3.81 and
3.82 (2s, 6H), 4.28 (br s, 1H), 5.52 (br s, 1H), 6.25 (d, 1H, J )
7.2), 6.50-7.30 (m, 3H); IR 1714 (acetyl CdO), 1676 (amide
CdO); MS 293 (M+, 59), 251 (M+ - COCH2+, 96), 138
(C6H4(OCH3)2, 100); HRMS for C14H15NO4S calcd 293.0722,
found 293.0724.
Exp er im en ta l Section
Melting points were obtained with an Electrothermal melting
point apparatus. All chromatographic isolations were accom-
plished on silica gel GF 254 (70-230 mesh). All reagents were
of commercial quality. J values are in hertz.
P r ep a r a tion of 1,4-Th ia zin -3-on es 2. Gen er a l P r oce-
d u r e. To a solution of 2-methyl-N-phenyl-1,4-oxathiin-3-car-
boxamide (1a ) (852 mg, 3.6 mmol) in MeCN (20 mL) was added
concentrated HCl (10 mL). The solution was placed in an 80 °C
oil bath with stirring for 10 min. The reaction mixture was
2-Acet yl-4-(2,4-d im et h ylp h en yl)-2H -1,4-t h ia zin -3(4H )-
on e (2k ), a mixture of A isomer and B isomer (10:8): isomer A,
1H NMR (300 MHz, CDCl3) δ 2.14 and 2.32 (2s, 6H), 2.39 (s,
3H), 4.13 (d, 1H, J ) 1.7), 5.55 (dd, 1H, J ) 1.7, 6.8), 6.27 (d,
diluted with methylene chloride, washed with
a saturated
sodium bicarbonate solution and water, and then dried (Na2-
SO4). The solvent was evaporated and the resulting residue was
purified by flash chromatography using n-hexane/ethyl acetate
(7/3) to give 2-acetyl-4-phenyl-2H-1,4-thiazin-3(4H)-one (2a ) (596
mg, 70%) as a colorless solid.
1
1H, J ) 7.2), 7.02-7.26 (m, 3H); isomer B, H NMR δ 2.16 and
2.33 (2s, 6H), 2.40 (s, 3H), 4.20 (d, 1H, J ) 1.8), 5.52 (dd, 1H, J
) 1.8, 6.8), 6.29 (d, 1H, J ) 6.8), 7.02-7.26 (m, 3H); HRMS for
C
14H15NO2S calcd 261.0824, found 261.0823.
2-Acetyl-4-p h en yl-2H-1,4-th ia zin -3(4H)-on e (2a ): 1H NMR
(300 MHz, CDCl3) δ 2.41 (s, 3H), 4.14 (d, 1H, J ) 1.7),8 5.56
(dd, 1H, J ) 1.7, 7.2), 6.44 (d, 1H, J ) 7.2), 7.30-7.47 (m, 5H);
2-Acetyl-4-(4-eth ylp h en yl)-2H-1,4-th ia zin -3(4H)-on e (2l):
1H NMR (300 MHz, CDCl3) δ 1.24 (t, 3H, J ) 7.6), 2.40 (s, 3H),
(8) This coupling was due to long range coupling (4J ) between a
methine proton on C-2 and a vinyl proton on C-6. A lone pair of
electrons on sulfur can serve as a p donor to the neighboring protons
and thereby make 4J more positive.
(7) Challis, B. C.; Challis, J . A. The Chemistry of Amids; Zabicky,
J ., Ed.; Interscience Publishers: London, 1970; pp 731-857 and
references cited therein.