T. Barahona et al. / Carbohydrate Research 347 (2012) 114–120
119
4.7. Ethylation analysis
500
l
L solution of native polysaccharide and commercial k-carra-
geenan (0.0075–0.377 mg/mL), 500
l
L of ABTSꢀ+ was added. Absor-
Ethylation analysis was conducted according to Ciucanu and
Kerek.48 Briefly, the native polysaccharide (50 mg) in dimethylsulf-
oxide (5 mL) was stirred with finely powdered NaOH (400 mg) for
2 h at rt, then CH3CH2 I (5 mL) was added and the mixture was stir-
red for 1 h. The addition was repeated twice. The reaction was
stopped by addition of 2 mL of water, dialyzed against distilled
water and freeze-dried. The solid obtained was submitted twice
to the same ethylation procedure. The ethylated polysaccharide
was hydrolyzed with 2.0 M TFA for 2 h at 120 °C, and the partially
ethylated monosaccharides were reduced with NaBH4, and acety-
lated with Ac2O–pyridine. The partially ethylated alditol acetates
were analyzed by GC and GC–MS.
bance was registered in order to measure the kinetics of the
reaction.
4.9. Statistical analysis
The data obtained were means S.D. of three determinations,
and followed by the Student’s t-test. Differences were considered
to be statistically significant if P < 0.05. All assays were performed
in triplicate and repeated at least three times on different days.
Acknowledgements
The financial support of Dirección de Investigaciones Científicas
y Tecnológicas, Universidad de Santiago de Chile is gratefully
acknowledged. T. Barahona is grateful for a doctoral fellowship
and Grant AT-24091067 from CONICYT (Chile). A. Mansilla thanks
PFB-23 (Basal-CONICYT).
4.8. Determination of antioxidant capacity in vitro of sulfated
polysaccharides
4.8.1. Oxygen radical absorbance capacity (ORAC) assay
The consumption of fluorescein or C-phycocyanin associated
with its incubation with AAPH [2,20-azo-bis(2-amidinopropane)
dihydrochloride] was estimated from fluorescence measure-
ments.49 A reaction mixture containing 10 mM AAPH with and
without the native polysaccharide or commercial k-carrageenan
with different concentrations (0.001–1.0 mg/mL) in distilled water
was incubated in a phosphate buffer (10 mM, pH 7.0) at 37 °C.
References
1. Barahona, T.; Leal, D.; Mansilla, A.; Matsuhiro, B.; Palacios, P.; Rubilar, A. Primer
Congreso Chileno-Hispano-Argentino sobre Diversidad Química y Biológica de
Organismos de la Región Patagónica. Buvinic, M.; Villarroel, L., Eds.; Ediciones
Universidad de Magallanes: Punta Arenas, 2008. p. 53.
2. Mansilla, A.; Navarro, N.; Werlinger, C. Memorias del Curso Internacional de
Postgrado y Especialización de macroalgas en ambientes subantárticos; Ediciones
Universidad de Magallanes: Punta Arenas, 2003. pp. 73–84.
3. Yokoya, N. S.; Plastino, E. M.; Artel, R. In Proceedings of the XVIIth International
Seaweed Symposium; Chapman, A. R. O., Anderson, R. J., Vreeland, V., Davison, I.,
Eds.; Oxford University Press: New York, 2001; pp 425–434.
4. Levy, I.; Friedlander, M. Bot. Mar. 1990, 33, 339–345.
5. Plastino, E. M.; Ursi, S.; Fujii, M. T. Phycol. Res. 2004, 52, 45–52.
6. Guimarães, M.; Plastino, E.; Destombe, C. Eur. J. Phycol. 2003, 38, 165–169.
7. Matulewicz, M. C.; Ciancia, M.; Noseda, M. D.; Cerezo, A. S. Phytochemistry
1989, 28, 2937–2941.
8. Matulewicz, M. C.; Ciancia, M.; Noseda, M. D.; Cerezo, A. S. Phytochemistry
1990, 29, 3407–3410.
9. Ciancia, M.; Matulewicz, M. C.; Cerezo, A. S. Phytochemistry 1993, 34, 1541–
1543.
10. Ciancia, M.; Matulewicz, M. C.; Cerezo, A. S. Phytochemsitry 1997, 45, 1009–
1013.
11. Carlucci, M. J.; Pujol, C. A.; Ciancia, M.; Noseda, M. D.; Matulewicz, M. C.;
Damonte, E. B.; Cerezo, A. S. Int. J. Biol. Macromol. 1997, 20, 97–105.
12. Guibet, M.; Kervarec, N.; Génicot, S.; Chevolot, Y.; Helbert, W. Carbohydr. Res.
2006, 341, 1859–1869.
Fluorescein (1.5
crease in the sample fluorescence intensity (excitation 491 nm,
emission 512 nm). C-phycocyanin (300 M) consumption was
lM) consumption was evaluated from the de-
l
evaluated based on the decrease in the sample fluorescence inten-
sity (excitation 610 nm, emission 645 nm). Fluorescence measure-
ments were conducted using
a Fluorolog-Spex 1681/0.22 m
spectrofluorimeter (Spex, Metuchen, NJ, USA). Bandwidths of
1.25 nm were used for excitation and emission slits. Values of
the intensity of fluorescence F in relation to initial value F° (IF/IF°)
were plotted as a function of time. Integration of the area under
the curve (AUC) was performed up to a time such that (IF/IF°)
reached a value close to zero. ORAC values were obtained from
the slopes of concentration versus AUC curves of the polysaccha-
ride and ascorbic acid.
4.8.2. Hydroxyl radical scavenging activity assay (HRS)
Hydroxyl radicals were generated by the Fenton reaction at
20 °C.20 The absorbance at 624 nm of aqueous solutions of
0.435 mM Brilliant Green (BG) (Carlo Erba, Milano, Italy),
0.25 mM solution of FeSO4, and varying concentrations of the na-
tive polysaccharide and commercial k-carrageenan (0–0.24 mg/
mL) were measured as time function immediately after the addi-
tion of H2O2. Absorption spectra were measured using an
HP8453 diode array spectrophotometer (Hewlett Packard, Wald-
bronn, Germany).
13. Campo, V. L.; Kawano, D. F.; Da Silva, D., Jr.; Carvalho, I. Carbohydr. Polym. 2009,
77, 167–180.
14. Matsuhiro, B. Hydrobiologia 1996, 326/327, 481–489.
15. Matsuhiro, B.; Conte, A. F.; Damonte, E. B.; Kolender, A. A.; Matulewicz, M. C.;
Mejías, E. G.; Pujol, C. A.; Zúñiga, E. A. Carbohydr. Res. 2005, 340, 2392–2402.
16. Van de Velde, F.; Knutsen, S. H.; Usov, A. I.; Rollema, H. S.; Cerezo, A. S. Trends
Food Sci. Technol. 2002, 13, 73–92.
17. Usov, A. I.; Bilan, M. I.; Shaskov, A. S. Carbohydr. Res. 1997, 303, 93–102.
18. Popper, Z. A.; Sadler, I. H.; Fry, S. C. Phytochemistry 2001, 57, 711–719.
19. Navarro, D. A.; Stortz, C. A. Carbohydr. Res. 2008, 343, 2613–2622.
20. Barahona, T.; Chandía, N. P.; Encinas, M. V.; Matsuhiro, B.; Zúñiga, E. A. Food
Hydrocoll. 2011, 25, 529–535.
21. Prior, R. L.; Cao, G. Free Radical Biol. Med. 1990, 27, 1173–1181.
22. Zulueta, A.; Esteve, M. J.; Frígola, A. Food Chem. 2009, 114, 310–316.
23. Ou, B.; Hampsch-Woodill, M.; Prior, R. L. J. Agric. Food Chem. 2001, 49, 4619–
4626.
24. Wang, X.; Li, L.; Chang, W.; Zhang, J.; Gui, L.; Guo, B.; Liang, D. Acta Crystallogr.,
Sect. D 2001, 57, 784–792.
4.8.3. Ferrous ion chelating ability
The method reported by Decker and Welch was used to inves-
tigate the ferrous ion chelating ability.50 The native polysaccharide
and commercial k-carrageenan (0.54 mg/mL) were mixed with
0.1 mL of 2 mM FeCl2 and 0.2 mL of 5 mM ferrozine solutions.
The absorbance was measured at 562 nm where the complex of
Fe2–ferrozine showed strong absorbance.
25. De Ruiter, G.; Rudolph, B. Trends Food Sci. Technol. 1997, 8, 389–395.
26. Huang, R.; Mendis, E.; Kim, S. Int. J. Biol. Macromol. 2005, 36, 120–127.
27. Roucha de Souza, M. C.; Teixeira, C.; Guerra, C. M.; Ferreira da Silva, F. R.;
Oliveira, H. A.; Lisboa, E. J. Appl. Phycol. 2007, 19, 153–160.
28. Zhang, H.; Wang, Z.; Yang, L.; Yang, X.; Wang, X.; Zhang, Z. Int. J. Mol. Sci. 2011,
12, 3288–3302.
29. Hu, T.; Liu, D.; Chen, Y.; Wu, J.; Wang, S. Int. J. Biol. Macromol. 2010, 46, 193–
198.
30. Zhang, Z.; Wang, F.; Wang, X.; Liu, X.; Hou, Y.; Zhang, Q. Carbohydr. Polym.
2010, 82, 118–121.
31. Ulanski, P.; von Sonntag, C. J. Chem. Soc., Perkin Trans. 2 2002, 2022–2028.
32. Stookey, L. L. Anal. Chem. 1970, 42, 779–781.
33. Nenadis, N.; Wang, L.; Tsimidou, M.; Zhang, H. J. Agric. Food Chem. 2004, 52,
4669–4674.
4.8.4. Antioxidant capacity (ABTS)
The ABTS radical cation (ABTSꢀ+) was produced by reacting ABTS
(2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid diammo-
nium salt) aqueous solution with 2.45 mM potassium persulfate
at room temperature for 16 h.51 The ABTSꢀ+ solution was diluted
with PBS, pH 7.0 to an absorbance of 0.70 at 734 nm. To 20–