ACS Chemical Neuroscience
Page 12 of 14
(29) Huong, V. T., Shimanouchi, T., Shimauchi, N., Yagi, H., Umaꢀ
bisulfite detection in living zebrafish. Sens. Actuators B Chem.
243, 971 976.
(45) Kang, J., Lee, S. J. C., Nam, J. S., Lee, H. J., Kang, M.ꢀG.,
Korshavn, K. J., Kim, H.ꢀT., Cho, J., Ramamoorthy, A., Rhee,
H.ꢀW., Kwon, T.ꢀH., and Lim, M. H. (2017) An iridium(III)
koshi, H., Goto, Y., and Kuboi, R. (2010) Catechol derivatives
inhibit the fibril formation of amyloidꢀβ peptides. J. Biosci. Bi-
oeng. 6, 629−634.
–
1
2
3
4
5
6
7
8
(30) Di Giovanni, S., Eleuteri, S.; Paleologou, K. E., Yin, G.,
Zweckstetter, M., Carrupt, P.ꢀA., and Lashuel, H. A. (2010) Enꢀ
tacapone and tolcapone, two catechol Oꢀmethyltransferase inꢀ
hibitors, block fibril formation of αꢀsynuclein and βꢀamyloid
and protect against amyloidꢀinduced toxicity. J. Biol. Chem.
complex as
a
photoactivatable tool for oxidation of
amyloidogenic peptides with subsequent modulation of peptide
aggregation. Chem.-Eur. J. 23, 1645–1653.
(46) Bernstein, S. L., Dupuis, N. F., Lazo, N. D., Wyttenbach, T.,
Condron, M. M., Bitan, G., Teplow, D. B., Shea, J.ꢀE., Ruotolo,
B. T., Robinson, C. V., and Bowers, M. T. (2009) Amyloidꢀβ
protein oligomerization and the importance of tetramers and
dodecamers in the aetiology of Alzheimer's disease. Nat. Chem.
285, 14941–14954.
(31) Ambrée, O., Richter, H., Sachser, N., Lewejohann, L., Dere, E.,
de Souza Silva, M. A., Herring, A., Keyvani, K., Paulus, W.,
and Schäbitz, W.ꢀR. (2009) Levodopa ameliorates learning and
memory deficits in a murine model of Alzheimer’s disease.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
1, 326–331.
(47) Young, L. M., Saunders, J. C., Mahood, R. A., Revill, C. H.,
Foster, R. J., Tu, L.ꢀH., Raleigh, D. P., Radford, S. E., and
Ashcroft, A. E. (2015) Screening and classifying smallꢀ
molecule inhibitors of amyloid formation using ion mobility
spectrometry–mass spectrometry. Nat. Chem. 7, 73–81.
(48) Stadtman, E. R. and Levine, R. L. (2003) Free radicalꢀmediated
oxidation of free amino acids and amino acid residues in
proteins. Amino Acids 25, 207–218.
(49) Cardey, B. and Enescu, M. (2009) Cysteine oxidation by the
superoxide radical: A theoretical study. ChemPhysChem. 10,
1642–1648.
(50) Vogt, W. (1995) Oxidation of methionyl residues in proteins:
Tools, targets, and reversal. Free Radic. Biol. Med. 18, 93–105.
(51) Pirota, V., Dell'Acqua, S., Monzani, E., Nicolis, S., and Casella,
L. (2016) Copper–Aβ peptides and oxidation of catecholic subꢀ
strates: Reactivity and endogenous peptide damage. Chem.-Eur.
J. 22, 16964–16973.
(52) Bitan, G., Tarus, B., Vollers, S. S., Lashuel, H. A., Condron, M.
M., Straub, J. E., and Teplow, D. B. (2003) A molecular switch
in amyloid assembly: Met35 and amyloid βꢀprotein
oligomerization. J. Am. Chem. Soc. 125, 15359–15365.
(53) Palmblad, M., WestlindꢀDanielsson, A., and Bergquist, J.
(2002) Oxidation of methionine 35 attenuates formation of amꢀ
yloid βꢀpeptide 1–40 oligomers. J. Biol. Chem. 277, 19506–
19510.
(54) CoronaꢀAvendaño, S., AlarcónꢀAngeles, G., RamírezꢀSilva, M.
T., RosqueteꢀPina, G., RomeroꢀRomo, M., and Palomarꢀ
Pardavé, M. (2007) On the electrochemistry of dopamine in
aqueous solution. Part I: The role of [SDS] on the voltammetric
Neurobiol. Aging 30, 1192–1204.
(32) Liu, M., Kou, L., Bin, Y., Wan, L., and Xiang, J. (2016)
Complicated function of dopamine in Aβꢀrelated neurotoxicity:
Dual interactions with Tyr10 and SNK(26–28) of Aβ. J. Inorg.
Biochem. 164, 119–128.
(33) Chen, K., Gunter, K., and Maines, M. D. (2000) Neurons
overexpressing heme oxygenaseꢀ1 resist oxidative stressꢀ
mediated cell death. J. Neurochem. 75, 304–313.
(34) Stocker, R., Yamamoto, Y., McDonagh, A., Glazer, A., and
Ames, B. (1987) Bilirubin is an antioxidant of possible
physiological importance. Science 235, 1043–1046.
(35) Vellaisamy, K., Li, G., Ko, C.ꢀN., Zhong, H.ꢀJ., Fatima, S.,
Kwan, H.ꢀY., Wong, C.ꢀY., Kwong, W.ꢀJ., Tan, W., Leung, C.ꢀ
H., and Ma, D.ꢀL. (2018) Cell imaging of dopamine receptor
using agonist labeling iridium(III) complex. Chem. Sci. 9,
1119–1125.
(36) Wang, L., Su, D., Berry, S. N., Lee, J., and Chang, Y.ꢀT. (2017)
A new approach for turnꢀon fluorescence sensing of LꢀDOPA.
Chem. Commun. 53, 12465–12468.
(37) Lin, S., Yang, X., Jia, S., Weeks, A. M., Hornsby, M., Lee, P.
S., Nichiporuk, R. V., Iavarone, A. T., Wells, J. A., Toste, F. D.,
and Chang, C. J. (2017) Redoxꢀbased reagents for
chemoselective methionine bioconjugation. Science 355, 597
602.
(38) Verwilst, P., Kim, H.ꢀR., Seo, J., Sohn, N.ꢀW., Cha, S.ꢀY., Kim,
Y., Maeng, S., Shin, J.ꢀW., Kwak, J. H., Kang, C., and Kim, J.
S. (2017) Rational design of in vivo tau tangleꢀselective nearꢀ
infrared fluorophores: expanding the BODIPY universe. J. Am.
–
Chem. Soc. 139, 13393–13403.
behavior of dopamine on
a carbon paste electrode. J.
(39) Han, J., Lee, H. J., Kim, K. Y., Lee, S. J. C., Suh, J.ꢀM., Cho, J.,
Chae, J., and Lim, M. H. (2018) Tuning structures and
properties for developing novel chemical tools toward distinct
pathogenic elements in Alzheimer’s disease. ACS Chem.
Electroanal. Chem. 609, 17–26.
(55) Barreto, W. J., Barreto, S. R. G., Ando, R. A., Santos, P. S.,
DiMauro, E., and Jorge, T. (2008) Raman, IR, UV–Vis and
EPR characterization of two copper dioxolene complexes
derived from Lꢀdopa and dopamine. Spectrochim. Acta. A Mol.
Biomol. Spectrosc. 71, 1419–1424.
(56) Andersen, J. K. (2004) Oxidative stress in neurodegeneration:
Cause or consequence? Nat. Med. 5, S18–S25.
(57) Mandrekar, S. and Landreth, G. E. (2010) Microglia and
inflammation in Alzheimer’s disease. CNS Neurol. Disord.
Drug Targets 9, 156–167.
(58) Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C., and Gage,
F. H. (2010) Mechanisms underlying inflammation in
neurodegeneration. Cell 140, 918–934.
(59) Lull, M. E. and Block, M. L. (2010) Microglial activation and
chronic neurodegeneration. Neurotherapeutics 7, 354–365.
(60) Amor, S., Puentes, F., Baker, D., and Van Der Valk, P. (2010)
Inflammation in neurodegenerative diseases. Immunology 129,
154–169.
(61) Sheng, J. G., Bora, S. H., Xu, G., Borchelt, D. R., Price, D. L.,
and Koliatsos, V. E. (2003) Lipopolysaccharideꢀinduced
neuroinflammation increases intracellular accumulation of
amyloid precursor protein and amyloid beta peptide in APPswe
transgenic mice. Neurobiol. Dis. 14, 133–145.
Neurosci. 9, 800–808.
(40) Liu, L.ꢀJ., Wang, W., Huang, S.ꢀY., Hong, Y., Li, G., Lin, S.,
Tian, J., Cai, Z., Wang, H.ꢀM. D., Ma, D.ꢀL., and Leung, C.ꢀH.
(2017) Inhibition of the Ras/Raf interaction and repression of
renal cancer xenografts in vivo by an enantiomeric iridium(III)
metalꢀbased compound. Chem. Sci. 8, 4756–4763.
(41) Wang, W., Vellaisamy, K., Li, G., Wu, C., Ko, C.ꢀN., Leung,
C.ꢀH., and Ma, D.ꢀL. (2017) Development of a longꢀlived
luminescence probe for visualizing βꢀgalactosidase in ovarian
carcinoma cells. Anal. Chem. 89, 11679–11684.
(42) Hori, Y., Otomura, N., Nishida, A., Nishiura, M., Umeno, M.,
Suetake, I., and Kikuchi, K. (2018) Syntheticꢀmolecule/protein
hybrid probe with fluorogenic switch for liveꢀcell imaging of
DNA methylation. J. Am. Chem. Soc. 140, 1686–1690.
(43) Wang, H., Feng, Z., Del Signore, S. J., Rodal, A. A., and Xu, B.
(2018) Active probes for imaging membrane dynamics of live
cells with high spatial and temporal resolution over extended
time scales and areas. J. Am. Chem. Soc. 140, 3505–3509.
(44) Liu, J.ꢀB., Yang, C., Ko, C.ꢀN., Vellaisamy, K., Yang, B., Lee,
M.ꢀY., Leung, C.ꢀH., and Ma, D.ꢀL. (2017) A long lifetime
iridium(III) complex as a sensitive luminescent probe for
(62) Von Bernhardi, R. (2007) Glial cell dysregulation: A new
perspective on Alzheimer disease. Neurotox. Res. 12, 215–232.
ACS Paragon Plus Environment