7600
J . Org. Chem. 1996, 61, 7600-7602
Sch em e 1
Ster eoselective Syn th esis of
Dih yd r op yr a n -4-on es via a F or m a l Heter o
Diels-Ald er Rea ction a n d Cer ic
Am m on iu m Nitr a te Deh yd r ogen a tion
P. Andrew Evans* and J ade D. Nelson
Lammot du Pont Laboratory, Department of Chemistry and
Biochemistry, University of Delaware,
Newark, Delaware 19716
propylsilyl)oxy enol ethers 2.12-14 The (triisopropylsilyl)-
oxy diene 1 is a practical synthetic intermediate, owing
to its resistance to acid-catalyzed hydrolysis, compared
to the trimethylsilyl derivative, and generally affords the
2,3-disubstituted dihydropyran with improved diastereo-
control.5,6 This increased stability of triisopropylsilyl
derivatives has been attributed to steric hindrance at
silicon created by the isopropyl groups which makes them
more stable to proto-desilylation.12-14
Received J uly 12, 1996
The synthesis of pyranoid rings continues to be a
topical area of interest owing to the number of biologically
important molecules that contain this important moi-
ety.1,2 Several methods have been developed for dihy-
dropyran-4-one ring construction.3 However, the hetero
Diels-Alder4 reaction with Danishefsky’s diene5-7 pro-
vides one of the most convenient entries into this class
of compounds, and has provided the basis for a number
of synthetic strategies. Furthermore, the application of
asymmetric catalysis to this protocol has made it a very
powerful synthetic tool.8
In this note, we describe a new approach to the
dihydropyran-4-ones 4a -f based on a novel ceric am-
monium nitrate-induced dehydrogenation of 4-[(triiso-
propylsilyl)oxy]dihydropyrans 2a -f,9 which were pre-
pared by a formal hetero Diels-Alder of the monoacti-
vated (triisopropylsilyl)oxy diene 110,11 with an array of
aldehydes (Scheme 1). The advantage of this strategy is
the ability to isolate and directly functionalize the (triso-
Table 1 summarizes the results for the optimization
study using the (triisopropylsilyl)oxy diene 1 and ben-
zaldehyde. The reactions were all carried out by initially
precomplexing the aldehyde with the relevant Lewis acid
followed by the addition of the diene 1. Treatment of the
aldehyde with stoichiometric zinc chloride followed by the
diene 1 furnished the 2,3-disubstituted dihydropyrans 2a /
3a in modest yield favoring the cis-diastereoisomer (entry
1). The modest yield was attributed to hydrolysis of the
diene 1 over the extended reaction time. Treatment of
benzaldehyde with stoichiometric boron trifluoride ether-
ate at -78 °C followed by addition of the diene 1
furnished the dihydropyrans 2a /3a in excellent yield in
a slightly improved 8.5:1 mixture of stereoisomers (entry
2). The diastereoselectivity was further improved using
catalytic boron trifluoride etherate to afford the dihydro-
pyrans 2a /3a in 94% yield with a 28:1 preference for the
cis-diastereoisomer (entry 3). Two aluminum-based Lewis
acids were also examined. Treatment of benzaldehyde
and the diene 1 under analogous conditions with a
catalytic amount of trimethylaluminum led to recovered
starting materials (entry 4). However, the same reaction
with catalytic dimethylaluminum chloride at -78 °C
furnished the dihydropyrans 2a /3a in 93% yield as a 30:1
mixture of diastereoisomers (entry 5). Interestingly, the
stereochemical outcome may be completely reversed by
employing a stoichiometric amount of dimethylaluminum
chloride at higher temperature (entry 6). The ability to
alter the stereochemical outcome in this manner has been
attributed to a Mukaiyama aldol (stepwise) rather than
a formal hetero Diels-Alder (concerted) mechanistic
pathway.5,6
(1) (a) Doblem, M. Ionophores and Their Structures; Wiley-
Interscience: New York, 1981. (b) Westley, J . W., Ed. Polyether
Antibiotics; Marcel Dekker: New York, 1982; Vols. I and II. (c) Boivin,
T. L. B. Tetrahedron 1987, 43, 3309. (d) Alvarez, E.; Candenas, M.
-L.; Perez, R.; Ravelo, J . L.; Martin, J . D. Chem. Rev. 1995, 95, 1953.
(2) For recent reviews on the glycosides, see: (a) Danishefsky, S.;
DeNinno, M. P. Angew. Chem., Int. Ed. Engl. 1987, 26, 15. (b) Postema,
M. H. D. Tetrahedron 1992, 48, 8545. (c) Ager, D. J .; East, M. B.
Tetrahedron 1993, 49, 5683.
(3) (a) Paterson, I.; Osborne, S. Tetrahedron Lett. 1990, 31, 2213.
(b) Obrecht, D. Helv. Chim. Acta 1991, 74, 27. (c) Coleman, R. S.;
Fraser, J . R. J . Org. Chem. 1993, 58, 385. (d) Nangia, A.; Rao, P.-B.
Tetrahedron Lett. 1993, 34, 2681 and pertinent references cited therein.
(4) Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in
Organic Synthesis; Academic Press: San Diego, CA, 1987.
(5) For reviews on the hetero Diels-Alder reaction, see: (a) Dan-
ishefsky, S. Aldrichim. Acta 1986, 19, 59. (b) Schmidt, R. R. Acc. Chem.
Res. 1986, 19, 250. (c) Danishefsky, S. J . Chemtracts 1989, 273. (d)
Bednarski, M. D.; Lyssikatos, J . P. In Comprehensive Organic Syn-
thesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York,
1991; Vol. 2, p 661.
(6) (a) Danishefsky, S. J .; Larson, E.; Askin, D.; Kato, N. J . Am.
Chem. Soc. 1985, 107, 1246. (b) Danishefsky, S.; Chao, K.-H.; Schulte,
G. J . Org. Chem. 1985, 50, 4650. (c) Danishefsky, S. J .; Maring, C. J .
J . Am. Chem. Soc. 1985, 107, 1269. (d) Danishefsky, S. J .; Myles, D.
C.; Harvey, D. F. J . Am. Chem. Soc. 1987, 109, 862. (e) Danishefsky,
S. J .; DeNinno, S.; Lartey, P. J . Am. Chem. Soc. 1987, 109, 2082 and
pertinent references cited therein.
(7) (a) Gould, S. J .; Eisenburg, R. L.; Hillis, L. R. Tetrahedron 1991,
47, 7209. (b) Annunziata, R.; Cinquini, M.; Cozzi, F.; Cozzi, P. G.;
Raimondi, L. J . Org. Chem. 1992, 57, 3605. (c) Reetz, M. T.; Gansa¨uer,
G. Tetrahedron 1993, 49, 6025. (d) Yang, G.; Myles, D. C. Tetrahedron
Lett. 1994, 35, 2503. (e) Burger, M. T.; Still, W. C. J . Org. Chem. 1996,
61, 775 and pertinent references cited therein.
(10) For examples of monoactivated dienes in the hetero Diels-Alder
reaction, see: (a) Danishefsky, S. J .; Pearson, W. H. J . Org. Chem.
1983, 48, 3865. (b) Danishefsky, S.; Harvey, D. F.; Quallich, G.; Uang,
B.-J . J . Org. Chem. 1984, 49, 392. (c) Danishefsky, S. J .; Pearson, W.
H.; Harvey, D. F.; Maring, C. J .; Springer, J . P. J . Am. Chem. Soc.
1985, 107, 1256. (d) Danishefsky, S. J .; Uang, B.-J .; Quallich, G. J .
Am. Chem. Soc. 1985, 107, 1285. (e) Mujica, M. T.; Afonso, M. M.;
Galindo, A.; Palenzuela, J . A. Tetrahedron 1996, 52, 2167 and pertinent
references cited therein.
(8) (a) Bednarski, M.; Maring, C.; Danishefsky, S. Tetrahedron Lett.
1983, 24, 3451. (b) Maruoka, K.; Itoh, T.; Shirasaka, T.; Yamamoto,
H. J . Am. Chem. Soc. 1988, 110, 310. (c) Gao, Q.; Maruyama, T.; Mouri,
M.; Yamamoto, H. J . Org. Chem. 1992, 57, 1951. (d) Corey, E. J .;
Cywin, C. L. Roper, T. D. Tetrahedron Lett. 1992, 33, 6907. (e) Gao,
Q.; Ishihara, K.; Maruyama, T.; Mouri, M.; Yamamoto, H. Tetrahedron
1994, 50, 979. (f) Mikami, K.; Kotera, O.; Motoyama, Y.; Sakaguchi,
H. Synlett 1995, 975. (g) Keck, G. E.; Li, X.-Y.; Krishnamurthy, D. J .
Org. Chem. 1995, 60, 5998 and pertinent references cited therein.
(9) Evans, P. A.; Longmire, J . M.; Modi, D. P. Tetrahedron Lett.
1995, 36, 3985.
(11) The (triisopropylsilyl)oxy diene 1 can be stored at -20 °C for
months without decomposition.
(12) For a review on the triisopropylsilyl enol ethers, see: Ru¨cker,
C. Chem. Rev. 1995, 95, 1009.
(13) (a) Magnus, P.; Roe, M. B.; Hulme, C. J . Chem. Soc., Chem.
Commun. 1995, 263. (b) Magnus, P.; Lacour, J .; Evans, P. A.; Roe, M.
B.; Hulme, C. J . Am. Chem. Soc. 1996, 118, 3406 and pertinent
references cited therein.
(14) (a) Evans, P. A.; Longmire, J . M. Tetrahedron Lett. 1994, 35,
8345. (b) Evans, P. A.; Modi, D. P. J . Org. Chem. 1995, 60, 6662.
S0022-3263(96)01325-4 CCC: $12.00 © 1996 American Chemical Society