ChemComm
Communication
2 For an overview of transmetallation reactions leading to organo-
copper complexes, see: C. J. Rosenker and P. Wipf, in The Chemistry
of Organocopper Compounds, Part 2, ed. Z. Rappoport and I. Marek,
John Wiley & Sons Ltd., Chichester, 2009, pp. 443–525.
3 An elegant methodology for the water-sensitive copper-catalyzed
conjugate additions of RM to enones in water has been recently
realized: B. H. Lipshutz, S. Huang, W. W. Y. Leong, G. Zhong and
N. A. Isley, J. Am. Chem. Soc., 2012, 134, 19985–19988.
4 We performed the reactions of 1b with Mg, Zn and Cu salts under
several typical conditions, but failed to obtain the desired coupling
product 2b.
5 Free radical cyclization (FRC) of 1b was also attempted with
Bu3SnH/AIBN or Et3B, but no cyclization product formed. For FRC
reactions with similar substrates, see: (a) D. Badone, J. Bernassau,
R. Cardamone and U. Guzzi, Angew. Chem., Int. Ed., 1996, 35,
535–538; (b) G. Wu, F. Lamaty and E. Negishi, J. Org. Chem., 1989,
54, 2507–2508; (c) G. Just and G. Sacripante, Can. J. Chem., 1987, 65,
104–109, for more FRC examples, see: (d) B. Giese, B. Kopping,
¨
T. Gobel, J. Dickhaut, G. Thoma, K. J. Kulicke and F. Trach, Radical
Cyclization Reactions, Organic Reactions, 2004, pp. 301–856;
(e) E. J. Enholm, J. S. Cottone and F. Allais, Org. Lett., 2001, 3,
Scheme 3 Synthesis of a potent glycoprotein IIb–IIIa antagonist.
´
145–147; ( f ) N. Maulide and I. E. Marko, Chem. Commun., 2006,
1200–1202; (g) D. L. J. Clive and R. Sunasee, Org. Lett., 2007, 9,
2677–2680; (h) D. L. J. Clive, R. Sunasee and Z. Chen, Org. Biomol.
Chem., 2008, 6, 2434–2441; (i) H. Kim and C. Lee, Org. Lett., 2011, 13,
2050–2053.
To further demonstrate the synthetic potential of this reaction, a route
based on product 2l was designed for the synthesis of compound 8
(Scheme 3), the (S)-isomer (MS-180) of which is a potential drug
selected for clinical evaluation for the treatment and prevention of
thrombosis (glycoprotein IIb–IIIa antagonist) in patients.13 Palladium-
catalyzed coupling of 2l with amide 6, followed by treatments in
ethanol in the presence of anhydrous hydrogen chloride and later
with morpholine, gave the benzimidamide intermediate. Subsequent
precipitation in dry HCl–EtOH delivered the target product 8 in 62%
yield over three steps. It is worth mentioning that the overall yield for
8 from 4-bromosalicylaldehyde is 42%, while in comparison, the
overall yield reported in the literature is ca. 17%, starting from much
more expensive 6-nitrochroman-4-one.13
In summary, a phosphine-mediated intramolecular conjugation
of alkyl halides with electron-deficient CQC double bonds has
been successfully developed. The reaction conditions are mild and
no conversion of the alkyl halide to the organometallic reagent is
required. This direct connection of two electrophilic moieties
provides a new and facile synthetic route for the preparation of
chroman derivatives, and can also be extended to the construction
of other relevant analogues such as tetrahydroquinolines, thio-
chromans, and tetralines. Based on this reaction, a short synthetic
route to a potent glycoprotein IIb–IIIa antagonist has also been
developed. Application of the current method in natural product
synthesis and the development of an asymmetric version are
currently ongoing in our laboratory.
6 For reviews, see (a) X.-L. Sun and Y. Tang, Acc. Chem. Res., 2008, 41,
937–948; (b) Y. Tang, S. Ye and X.-L. Sun, Synlett, 2005, 2720–2730,
for selected examples, see: (c) X.-M. Deng, P. Cai, S. Ye, X.-L. Sun,
W.-W. Liao, K. Li, Y. Tang, Y.-D. Wu and L.-X. Dai, J. Am. Chem. Soc.,
2006, 128, 9730–9740; (d) L.-W. Ye, X.-L. Sun, C.-Y. Zhu and Y. Tang,
Org. Lett., 2006, 8, 3853–3856; (e) L.-W. Ye, X.-L. Sun, Q.-G. Wang and
Y. Tang, Angew. Chem., Int. Ed., 2007, 46, 5951–5954; ( f ) Q.-G. Wang,
X.-M. Deng, B.-H. Zhu, L.-W. Ye, X.-L. Sun, C.-Y. Li, C.-Y. Zhu,
Q. Shen and Y. Tang, J. Am. Chem. Soc., 2008, 130, 5408–5409;
(g) C.-Y. Zhu, X.-Y. Cao, B.-H. Zhu, C. Deng, X.-L. Sun, B.-Q. Wang,
Q. Shen and Y. Tang, Chem.–Eur. J., 2009, 15, 11465–11468.
7 (a) A. Schnell and J. C. Tebby, Chem. Commun., 1977, 1883–1886;
(b) E. Taylor and S. F. Martin, J. Am. Chem. Soc., 1974, 96, 8095–8102;
(c) F. Zaragoza, J. Org. Chem., 2002, 67, 4963–4964; (d) Y. J. Im,
J. E. Na and J. N. Kim, Bull. Korean Chem. Soc., 2003, 24, 511–513;
(e) K. Y. Lee, J. E. Na, M. J. Lee and J. N. Kim, Tetrahedron Lett., 2004,
45, 5977–5981; ( f ) D. Duvvuru, P. Retailleau, J.-F. Betzer and
A. Marinetti, Eur. J. Org. Chem., 2012, 897–900; (g) O. I. Kolodiazhnyi,
Phosphorus Ylides: Chemistry and Application in Organic Synthesis,
Wiley-VCH, Weinheim, 1999, pp. 84–87.
8 (a) Comprehensive Heterocyclic Chemistry II, ed. A. R. Katritzky,
C. W. Rees and E. F. V. Scriven, Pergamon, Oxford, 1996, vol. 5;
(b) L. Zu, S. Zhang, H. Xie and W. Wang, Org. Lett., 2009, 11,
1627–1630; (c) B. M. Trost, H. C. Shen, L. Dong, J.-P. Surivet and
C. Sylvain, J. Am. Chem. Soc., 2004, 126, 11966–11983;
(d) W. A. Kinney, C. A. Teleha, A. S. Thompson, M. Newport,
R. Hansen, S. Ballentine, S. Ghosh, A. Mahan, G. Grasa,
A. Zanotti-Gerosa, J. Dingenen, C. Schubert, Y. Zhou, G. C. Leo,
D. F. McComsey, R. J. Santulli and B. E. Maryanoff, J. Org. Chem.,
2008, 73, 2302–2310, and references cited therein; (e) Y. Kanbe,
M.-H. Kim, M. Nishimoto, Y. Ohtake, N. Kato, T. Tsunenari,
K. Taniguchi, I. Ohizumi, S. Kaiho, K. Morikawa, J.-C. Jo,
H.-S. Lim and H.-Y. Kim, Bioorg. Med. Chem., 2006, 14, 4803–4819,
and references cited therein.
We are grateful for the financial support from the Natural Science
Foundation of China (No. 20932008, 21121062, 21272248), the
9 For more details, please see the ESI†.
Major State Basic Research Development Program (Grant No. 10 (a) M. E. Krafft, K. A. Seibert, T. F. N. Haxell and C. Hirosawa, Chem.
Commun., 2005, 5772–5774; (b) M. E. Krafft, T. F. N. Haxell,
K. A. Seibert and K. A. Abboud, J. Am. Chem. Soc., 2006, 128,
4174–4175; (c) C. Fischer, S. W. Smith, D. A. Powell and G. C. Fu,
2009CB825300) and Chinese Academy of Sciences.
J. Am. Chem. Soc., 2006, 128, 1472–1473; (d) L. Zhao, X. Y. Chen, S. Ye
Notes and references
and Z.-X. Wang, J. Org. Chem., 2011, 76, 2733–2743.
1 (a) M. B. Smith and J. March, Advanced Organic Chemistry: Reactions, 11 H. C. Shen, Tetrahedron, 2009, 65, 3931–3952.
Mechanisms, and Structure, Wiley-Interscience, New York, 6th edn, 12 X.-M. Cheng, G. F. Filzen, A. G. Geyer, C. Lee and B. K. Trivedi,
2007; (b) Handbook of Functionalized Organometallics. Applications in
US 0207915, 2003.
Synthesis, ed. P. Knochel, Wiley-VCH, Weinheim, 2005, vol. 2; 13 (a) K. Okumura, T. Shimazaki, Y. Aoki and H. Yamashita, J. Med.
(c) Organometallics in Synthesis; A Manual, ed. M. Schlosser, John
Wiley & Sons Ltd., Chichester, 2nd edn, 2002.
Chem., 1998, 41, 4036–4052; (b) Mitsui Toatsu Chemicals, Inc.,
US 5629321, 1997; (c) Mitsui Toatsu Chemicals, Inc., EP 760364, 1997.
c
4572 Chem. Commun., 2013, 49, 4570--4572
This journal is The Royal Society of Chemistry 2013