10.1002/anie.201915547
Angewandte Chemie International Edition
COMMUNICATION
no reaction is observed when nitrenium cation 2 is exposed to 1,4-
cyclohexadiene in the absence of substrate. Both tri-substituted
alkenes 17a and 18a were converted to 17b and 18b in high to
moderate yields. Finally, both tetrasubstituted alkenes 19a and
20a showed no conversion to 19b and 20b, presumably due to
steric encumbrance.
Acknowledgements
M. M. gratefully acknowledges the Royal Society for funding
(NF170051). We also thank the University of Oxford for access to
Chemical Crystallography and Advanced Research Computing
facilities, and Elemental Microanalysis Ltd. (Devon) for elemental
analyses.
Table 3. Dehydrocoupling reactions of alcohols and diphenylamine with
catalytic amounts of 2.
Keywords: Nitrenium ions • Lewis acids • Catalysis • Ketone
deoxygenation • Transfer hydrogenation
[1]
Lewis Acids in Organic Synthesis; H. Yamamoto, Ed.; Wiley-VCH:
Weinheim, 2000.
Entry
substrate (RE1H)[a]
PhOH (6a)
silane (HSiR2
HSiBu3
HSiEt3
)
conv.
3
[2]
[3]
J. M. Bayne, D. W. Stephan, Chem. Soc. Rev. 2016, 45, 765–774.
S. S. Chitnis, J. H. W. LaFortune, H. Cummings, L. L. Liu, R. Andrews,
D. W. Stephan, Organometallics 2018, 37, 4540–4544.
C. B. Caputo, L. J. Hounjet, R. Dobrovetsky, D. W. Stephan, Science
2013, 341, 1374–1377.
1
2
3
4
5
>99 (41)
>99 (54)
>99 (62)
95%
[4]
[5]
[6]
[7]
[8]
[9]
4-ClC6H4OH (21a)
4-MeC6H4OH (22a)
4-tBuC6H4OH (23a)
Ph2NH (24a)
HSiEt3
A. Augurusa, M. Mehta, M. Perez, J. T. Zhu, D. W. Stephan, Chem.
Commun. 2016, 52, 12195–12198.
HSiEt3
M. H. Holthausen, M. Mehta, D. W. Stephan, Angew. Chem. Int. Ed. 2014,
53, 6538–6541.
HSiEt3
>99 (31)
M. Mehta, I. G. de Ia Arada, M. Pérez, D. Porwal, M. Oestreich, D. W.
Stephan, Organometallics 2016, 35, 1030–1035.
[a] 2 (5 mol%, 5 mg) was added to a solution of substrate (0.1 mmol) and silane
(Et3SiH: 13 mg, 0.1 mmol, Bu3SiH: 23 mg, 0.1 mmol) in DCM (1 mL) at ambient
temperature on the bench.
based on R1H). Isolated yields given in parenthesis.
M. Mehta, M. H. Holthausen, I. Mallov, M. Pérez, Z.-W. Qu, S. Grimme,
D. W. Stephan, Angew. Chem. Int. Ed. 2015, 54, 8250–8254.
V. Fasano, J. H. W. LaFortune, J. M. Bayne, M. J. Ingleson, D. W.
Stephan, Chem. Commun. 2018, 54, 662–665.
[b]
Determined by 1H NMR spectroscopy (CD2Cl2,
Finally, the benchtop catalytic dehydrocoupling of alcohols
with silanes to eliminate hydrogen gas and form an O–Si was
expanded on. Catalytic benchtop transformations of this nature
are of importance because silanes are employed as protecting
groups for alcohols and amines in organic laboratories. This
transformation has been previously reported with the more air-
sensitive Lewis acid BCF by Piers, however they observed
diminished reactivity with bulky silanes such as HSiBu3 and
HSiiPr3.[53] We found that this reactivity could be expanded to
HSiBu3 with phenol to afford PhOSiBu3 (6c) under ambient
conditions with 5 mol% 2, but not HSiiPr3. Furthermore, under
similar reaction conditions both the electron-withdrawing
substituent, in the case of 21a, and electron-donating substituents,
in the case of 22a and 23a, were well tolerated and afforded 21b,
22b, or 23b in high conversion. Finally, diphenylamine (24a) was
dehydrocoupled with triethylsilane to give 24b in complete
conversion.
In conclusion, we report the preparation of the naked
nitrenium cation 2 by a salt metathesis reaction of 1 with
K[B(C6F5)4]. Despite the difficulties with benchmarking these N-
based Lewis acids using classical techniques like the Gutmann-
Beckett test and the GEI we explored these systems in five
catalytic transformations. Although direct comparison to boron-
based systems is still inconclusive, it was found that moving to the
less-coordinating anion [B(C6F5)4]– had a remarked impact on
catalytic activity. Furthermore, catalyst 2 retained catalytic activity
using traditional benchtop techniques and wet solvent. The
deoxygenation of ketones, transfer hydrogenation of olefins, and
dehydrocoupling of alcohols was expanded on. Investigations into
this new class of Lewis acids in catalysis and as a counterpart in
FLP chemistry to affect small molecule activation is currently
underway.
[10] M. Vogler, L. Süsse, J. H. W. LaFortune, D. W. Stephan, M. Oestreich,
Organometallics 2018, 37, 3303–3313.
[11] M. Yang, M.; M. Hirai, F. P. Gabbaï, Dalton Trans. 2019, 48, 6685–6689.
[12] D. M. C. Ould, R. L. Melen, Chem. Eur. J. 2018, 24, 15201–15204.
[13] M. Yang, M.; M. Hirai, F. P. Gabbaï, Dalton Trans. 2019, 48, 6685–6689.
[14] M. Hirai, F. P. Gabbaï, Angew. Chem. Int. Ed. 2015, 54, 1205–1209.
[15] B. Pan, F. P. Gabbaï, J. Am. Chem. Soc. 2014, 136, 9564–9567.
[16] D. Tofan, F. P. Gabbaï, Chem. Sci. 2016, 7, 6768–6778.
[17] M. Yang, N. Pati, G. Bélanger-Chabot, M. Hirai, F. P. Gabbaï, Dalton
Trans. 2018, 47, 11843–11850.
[18] A. M. Christianson, F. P. Gabbaï, Organometallics 2017, 36, 3013–3015.
[19] M. Yang, F. P. Gabbaï, Inorg. Chem. 2017, 56, 8644–8650.
[20] M. Hirai, J. Cho, F. P. Gabbaï, Chem. Eur. J. 2016, 22, 6537–6541.
[21] T. Ollevier, Org. Biomol. Chem. 2013, 11, 2740–2755.
[22] S. Balasubramaniam, S. Kumar, A. P. Andrews, B. Varghese, E. D.
Jemmis, A. Venugopal, Eur. J. Inorg. Chem. 2019, 2019, 3257–3257.
[23] S. Solyntjes, B. Neumann, H.-G. Stammler, N. Ignat'ev, B. Hoge, Chem.
Eur. J. 2017, 23, 1568–1575.
[24] The Chemistry of Diazonium and Diazo Groups, Part 2; S. Patai, Ed.;
Wiley: New York, 1978.
[25] A. F. Cockerill, R. G. Harrison, R. G. The Chemistry of Double-Bonded
Functional Groups, Part 1; S. Patai, Ed.; John Wiley & Sons, New York,
1977, Chap. 4.
[26] Nitrenes and Nitrenium Ions; D. E. Falveyand, A. D. Gudmundsdottir,
Eds.; John Wiley & Sons, Hoboken, 2013; pp 606.
[27] S. Moebs-Sanchez, G. Bouhadir, N. Saffon, L. Maron, D. Bourissou,
Chem. Commun. 2008, 3435–3437.
[28] G. A. Olah, J. A. Olah, N. A. Overchuk, J. Org. Chem. 1965, 30, 3373–
3376.
[29] G. Boche, P. Andrews, K. Harms, M. Marsch, K. S. Rangappa, M.
Schimeczek, C. Willeke, J. Am. Chem. Soc. 1996, 118, 4925–4930.
[30] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113,
361–363.
[31] Y. Mizuhata, T. Sasamori, N. Tokitoh, Chem. Rev. 2009, 109, 3479–3511.
[32] M. Asay, C. Jones, M. Driess, Chem. Rev. 2011, 111, 354–396.
[33] D. Gudat, Acc. Chem. Res. 2010, 43, 1307–1316.
This article is protected by copyright. All rights reserved.