5-Amino-1-(N-ethylcarbamoyl)imidazole-4-carboxamide
5b:
mp
150–152 °C (decomp.); nmax (KBr) 3476, 3360, 3276, 1718, 1656, 1532,
1294, 847 cm21; dH [(CD3)2SO] 8.51 (m, 1 H, NH), 7.64 (s, 1 H, H-2), 6.92
(br s, 1 H, NH), 6.81 (br s, 1 H, NH), 6.37 (br s, 2 H, NH2), 3.22 (m, 2 H,
CH2), 1.11 (t, 3 H, CH3); dC [(CD3)2SO] 167.2, 150.2, 150.9, 144.4, 127.1,
112.1, 35.8, 15.3; m/z 198 (M+ + 1); 5-Amino-1-[N-(2-chloroethyl)carba-
moyl]imidazole-4-carboxamide 5c: mp 102–105 °C (decomp.); nmax (KBr)
3432, 3364, 3257, 1720, 1651, 1550, 1502, 1325 cm21; dH [(CD3)2SO] 8.79
(m, 1 H, NH), 7.68 (s, 1 H, H-2), 6.92 (br s, 1 H, NH), 6.84 (br s, 1 H, NH),
6.40 (br s, 2 H, NH2), 3.78 (t, 2 H, CH2CH2Cl), 3.59 (q, 2 H, CH2CH2Cl);dC
[(CD3)2SO] 170.3, 154.4, 147.6, 130.1, 115.3, 46.9, 45.9; m/z 231/233
(M+); 5-Amino-1-(N-benzylcarbamoyl)imidazole-4-carboxamide 5d: mp
163–168 °C (decomp.); nmax (KBr) 3323, 3202, 1735, 1637, 1532, 1492,
1316, 1250 cm21; dH [(CD3)2SO] 9.09 (t, 1 H, NH), 7.74 (s, 1 H, H-2), 7.34
(m, 5 H, Ph), 6.92 (br s, 1 H, NH), 6.84 (br s, 1 H, NH), 6.42 (br s, 2 H, NH2),
4.45 (d, 2 H, CH2); dC [(CD3)2SO] 168.2, 152.3, 145.5, 140.2, 130.3, 129.2,
129.0, 128.0, 113.1, 45.2; N-(4-Carbamoylimidazol-5-yl)-NA-methylthio-
urea 7; mp 200–205 °C (decomp.); nmax (KBr) 3374, 3205, 2914, 1663,
1574, 1528, 1481, 1327 cm21; dH [(CD3)2SO] 12.63 (br s, 1 H, NH), 10.26
(br s, 1 H, NH), 9.89 (br s, 1 H, NH), 7.82 (s, 1 H, H-2), 7.43 (br s, 2 H,
NH2), 3.08 (d, 3 H, CH3); dC [(CD3)2SO] 183.8, 167.6, 149.5, 139.1, 110.9,
37.2; m/z 199 (M+); 2-Nitrosomethylaminoimidazo[1,5-b][1,2,4]thiadia-
zole-4-carboxamide 11; mp 145–150 °C (decomp.); nmax (KBr) 3481, 3423,
3365, 3139, 3126, 3039, 1675, 1625 1507, 1125 cm21; dH [(CD3)2SO] 8.08
(s, 1 H, H-6), 7.30 (br s, 1 H, NH), 7.16 (br s, 1 H, NH), 4.50 (s, 3 H, CH3);
Fig. 1 ORTEP view of the structure of 2-nitrosomethylaminoimidazo-
[1,5-b][1,2,4]thiadiazole-4-carboxamide 11. Displacement elipsoids are
shown at the 50% probability level.
CONH2
CONH2
NHC(S)NHMe
NHMe
N
MeNCS
4
N
N
SH
NH
NH
7
7′
NO+
–H+
dC [(CD3)2SO] 163.9, 154.8, 145.1, 126.4, 119.9, 31.6; m/z 227 (M+
+
CONH2
CONH2
1).
§ Crystal data for 11: C6H6N6O2S, M = 226.23, monoclinic, space group
P21/n, a = 7.522(7), b = 9.121(2), c = 13.383(7) Å, b = 97.73(6)°,
U
NHMe
NO
N
NHMe
NO2
N
[O]
N
N
= = 4, Dc = = 464, (Cu-
910(1) Å3, Z 1.65 g cm23, F(000)
S
S
NH
NH
Ka) = 1.54180 Å, m = 3.148 mm21, A lath 0.65 3 0.40 3 0.24 mm grown
from Me2SO–Et2O was mounted on an Enraf-Nonius CAD 4 dif-
fractometer. 1734 unique reflections were collected by w¯ 2 2q for 2° @ q
@ 75° and phased by direct methods.8 Full-matrix least-squares refine-
ment10 on F2 with anisotropic thermal parameters for non hydrogen atoms
and all hydrogen atom positions determined from difference Fourier
synthesis. At convergence, R = 0.076, Rw = 0.22 and GOF = 1.105 for
1479 observed reflections [I > 2 dI]. Atomic coordinates, bond lengths and
angles, and thermal parameters have been deposited in the Cambridge
Crystallographic Data Centre (CDDC). See information for Authors, Issue
No. 1. Any requests to the CDDC for this material should quote the full
literature citation and the reference number 182/301.
–HNO2
8
9
CONH2
CONH2
Me
N
N
NO+
–H+
N
NHMe
N
N
N
N
N
S
10
S
O
11
Scheme 3
This new synthesis of 11 in two steps from the aminoimidazole
4 is notable for the high yield and mild conditions and may be
adapted for the synthesis of other examples of this intriguing
new bicyclic system.
This work was supported by the Cancer Research Campaign,
UK. We thank collaborators at Aston Molecules Ltd,
Birmingham, UK and Schering-Plough Research Institute,
Kenilworth, New Jersey, USA for helpful discussions.
References
1 S. M. O’Reilly, E. S. Newlands, M. G. Glaser, M. Brampton, J. M. Rice-
Edwards, R. D. Illingworth, P. G. Richards, C. Kennard, I. R.
Colquhoun, P. Lewis and M. F. G. Stevens, Eur. J. Cancer, 1993, 29A,
940.
2 N. M. Bleehen, E. S. Newlands, S. M. Lee, N. Thatcher, P. Selby,
A. H. Calvert, G. J. S. Rustin, M. Brampton and M. F. G. Stevens,
J. Clin. Oncol., 1995, 13, 910.
3 M. F. G. Stevens, J. A. Hickman, R. Stone, N. W. Gibson, G. U. Baig,
E. Lunt and C. G. Newton, J. Med. Chem., 1984, 27, 196.
4 G. Ege and K. Gilbert, Tetrahedron Lett., 1979, 4253.
5 Y. Wang, M. F. G. Stevens, W. T. Thomson and B. P. Schutts, J. Chem.
Soc., Perkin Trans. 1, 1995, 2783.
6 G. Ege, K. Gilbert and K. Maurer, Chem. Ber., 1987, 120, 1375.
7 J. G. Erickson, in The Chemistry of Heterocyclic Compounds, ed. J. G.
Erickson, P. F. Wiley and V. P. Wystrach, Interscience Publishers, Inc.,
New York, 1956, vol. 10, pp. 1–43; M. F. G. Stevens, Progr. Med.
Chem., 1976, 13, 205.
8 C. C. Beard, USP 3 979 404/1976 (Chem. Abstr., 1977, 86, P29815).
9 G. M. Sheldrick, SHELX86, Program for Crystal Structure Solution,
Acta Crystallogr., Sect. A, 1990, 46, 467.
10 G. M. Sheldrick, SHELX93, University of Go¨ttingen, Germany,
1993.
Footnotes
† General experimental method for ureas 5 and thiourea 7. A solution or
suspension of 5-aminoimidazole-4-carboxamide hydrochloride (0.5 g) and
dry triethylamine (1 ml) in dry Me2SO or acetonitrile (10 ml) was treated
dropwise (1 h) with the isocyanate or isothiocyanate (1.2 equiv.) at 10 °C
(210 °C in the case of acetonitrile). The mixture was stirred overnight at
25 °C, quenched with water (25 ml), and products collected and washed
successively with water and ethyl acetate. Yields of ureas were 5a (85%), 5b
(75%), 5c (70%), 5d (95%) and the thiourea 7 (85%). Satisfactory
microanalytical data were obtained for new compounds.
‡ Selected physical data for ureas 5, thiourea 7 and imidazothiadiazole 11.
5-Amino-1-(N-methylcarbamoyl)imidazole-4-carboxamide 5a: mp 170 °C
(decomp.); nmax (KBr) 3409, 1718, 1661, 1535, 1453, 1311, 1241, 947
cm21; dH [(CD3)2SO] 8.46 (q, 1 H, NH), 7.62 (s, 1 H, H-2), 6.93 (br s, 1 H,
NH), 6.83 (br s, 1 H, NH), 6.39 (br s, 2 H, NH2), 2.78 (d, 3 H, CH3); dC
[(CD3)2SO] 167.2, 151.6, 144.3, 127.0, 112.1, 27.5; m/z 184 (M+ + 1);
Received, 6th September 1996; Com. 6/06159A
364
Chem. Commun., 1997