1884
Organometallics 1997, 16, 1884-1889
Molybd en u m Tr ica r bon yl Com p lexes of 1-Su bstitu ted
Bor ep in s
Arthur J . Ashe, III,* Samir M. Al-Taweel,1 Christian Drescher,
J eff W. Kampf, and Wolfram Klein
Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055
Received J anuary 13, 1997X
The reaction of 1-substituted borepins C6H6BX, where X ) Me, Ph, and Cl, with Py3Mo-
(CO)3 and BF3‚OEt2 affords the corresponding borepin molybdenum tricarbonyl complexes.
Similar reaction of 1-methoxyborepin affords (C6H6BF)Mo(CO)3. The reaction of (C6H6BCl)-
Mo(CO)3 with appropriate nucleophiles affords the boron-substituted complexes (C6H6BX)-
Mo(CO)3, where X ) H, OCH3, OH, O1/2, N(iPr)2, N(CH2)5, N(c-C6H11)2, and NBnMe. All
1
complexes (C6H6BX)Mo(CO)3 have been compared using H NMR, 11B NMR, and 13C NMR
spectroscopies. The X-ray structure of (C6H6BN(iPr)2)Mo(CO)3 shows that Mo is η6-
coordinated to the ring carbon atoms but not to B. Rates of rotation about the B-N bonds
of (C6H6BN(iPr)2)Mo(CO)3 and (C6H6BNBnMe)Mo(CO)3 have been measured using variable-
temperature NMR spectroscopy.
In tr od u ction
The recent availability of the seven-membered ring
borepins (3)12 has allowed exploration of their ligand
properties. We have previously reported on Cr(CO)3
complexes of ring-fused borepins 913 and 1014 and have
made preliminary reports on Mo(CO)3 complexes of
1-substituted borepins 6a ,15 6c,15 and 6d .16 We now
report in detail on Mo(CO)3 complexes of a larger series
of 1-substituted borepins, 6a -l and on the structure
of 6i.
Fully unsaturated boron heterocycles (1, 2, 3 Chart
1) are versatile ligands toward transition metals.2 The
ligand properties of the five-membered ring borole (1)2,3
and the six-membered ring boratabenzene (2)2,4-8 have
been extensively investigated. Typical complexes are
illustrated by structures 4c9 and 5c.10 For both ring
systems, exocyclic π-donor substituents can interact
strongly with boron in a manner which can change the
properties of the ligand. For example, the X-ray struc-
ture of 4c9 shows that the phenylborole ring is η5-
coordination to the metal. However, when the borole
ring bears a strong π-donor as in complexes 7 and 8,
the ring is only η4-coordinated to the metal.11 In the
same manner, B-Mn bonding is much stronger in 5c10
than that in 5l.7a
Resu lts a n d Discu ssion
Syn th eses. 1-Substituted borepins 3b-d are easily
prepared by the exchange reaction of 1,1-dibutylstan-
nepin (11)17 with the appropriate boron halide.12 Al-
ternatively, the reaction of 1-chloroborepin (3d ) with
nucleophiles affords 1-substituted borepins 3a ,15 3e-
l.12 Thus, borepins with a large variety of substituents
are available for study.
X Abstract published in Advance ACS Abstracts, April 1, 1997.
(1) Permanent address: Department of Chemistry, Mu’tah Univer-
sity, Mu’tah/Al-Karak, J ordan.
1-Alkyl- and 1-arylborepins are conveniently con-
verted to their Mo(CO)3 complexes by reaction with
tricarbonyltris(pyridine)molybdenum and boron trifluo-
ride etherate, Scheme 1. In this manner, we have
obtained (1-methylborepin)Mo(CO)3, 6b, as a red air-
sensitive oil and the phenyl derivative 6c as red crystals
which are only modestly air sensitive. In the case of
6c, it is interesting that the Mo(CO)3 group is coordi-
nated to the borepin rather than the phenyl ring.15
Similar metal coordination to the borepin as opposed
to the benzocyclic ring has been observed for 9.13 These
data suggest that the borepin moieties of 9 and 6c are
(2) (a) Herberich, G. E. In Comprehensive Organometallic Chemistry
II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford,
U.K., 1995; Vol. 1, p 197. (b) Herberich, G. E. In Comprehensive
Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W.,
Eds.; Pergamon: Oxford, U.K., 1982; Vol. 1, p 381.
(3) Herberich, G. E.; Wagner, T.; Marx, H.-W. J . Organomet. Chem.
1995, 502, 67. Herberich, G. E.; Carstensen, T.; Ko¨ffer, D. P. J .; Klaff,
N.; Boese, R.; Hyla-Kryspin, I.; Gleiter, R.; Stephen, M.; Meth, H.;
Zenneck, U. Organometallics 1994 13, 619 and the prior papers in this
series.
(4) (a) Herberich, G. E.; Greiss, G.; Heil, H. F. Angew. Chem., Int.
Ed. Engl. 1970, 9, 805. (b) Herberich, G. E.; Ohst, H. Adv. Organomet.
Chem. 1986, 25, 199.
(5) Ashe, A. J ., III; Meyers, E.; Shu, P.; Von Lehmann, T.; Bastide,
J . J . Am. Chem. Soc. 1975, 97, 6865.
(6) (a) Herberich, G. E.; Schmidt, B.; Englert, U.; Wagner, T.
Organometallics 1993, 12, 2891. (b) Herberich, G. E.; Schmidt, B.;
Englert, U. Organometallics 1995, 14, 471. (c) Herberich, G. E.;
Englert, U.; Schmidt, M. U.; Standt, R. Organometallics 1996, 15, 2707.
(7) (a) Ashe, A. J ., III; Kampf, J . W.; Mu¨ller, C.; Schneider, M.
Organometallics 1996, 15, 387. (b) Ashe, A. J ., III; Kampf, J . W.; Waas,
J . R. Organometallics 1997, 16, 163.
(12) Ashe, A. J ., III; Klein, W.; Rousseau, R. Organometallics 1993,
12, 3225.
(13) Ashe, A. J ., III; Drone, F. J . J . Am. Chem. Soc. 1987, 109, 1879;
1988, 110, 6599.
(8) (a) Bazan, G. C.; Rodriguez, G.; Ashe, A. J ., III; Al-Ahmad, S.;
Mu¨ller, C. J . Am. Chem. Soc. 1996, 118, 2291. (b) Bazan, G. C.;
Rodriguez, G.; Ashe, A. J ., III; Al-Ahmad, S.; Kampf, J . W. Organo-
metallics, submitted for publication.
(9) Herberich, G. E.; Boveleth, W.; Hessner, B.; Ko¨ffer, D. P. J .;
Negele, M.; Saive, R. J . Organomet. Chem. 1986, 308, 153.
(10) Huttner, G.; Gartzke, W. Chem. Ber. 1974, 107, 3786.
(11) Herberich, G. E.; Hessner, B.; Ohst, H.; Raap, I. A. J . Organ-
omet. Chem. 1988, 348, 305.
(14) Ashe, A. J ., III; Kampf, J . W.; Kausch, C. M.; Konishi, H.;
Kristen, M. O.; Kroker, J . Organometallics 1990, 9, 2944.
(15) Ashe, A. J ., III; Kampf, J . W.; Nakadaira, Y.; Pace, J . M. Angew.
Chem., Int. Ed. Engl. 1992, 31, 1255.
(16) Ashe, A. J ., III; Kampf, J . W.; Klein, W.; Rousseau, R. Angew.
Chem., Int. Ed. Engl. 1993, 32, 1065.
(17) (a) Nakadaira, Y.; Sato, R.; Sakurai, H. Chem. Lett. 1987, 1451.
(b) Nakadaira, Y.; Sato, R.; Sakurai, H. J . Organomet. Chem. 1992,
441, 411.
S0276-7333(97)00017-4 CCC: $14.00 © 1997 American Chemical Society