SYNTHESIS, CRYSTAL STRUCTURE, PROPERTIES, AND NUCLEASE ACTIVITY
403
10. Thomas, A.M., Nethaji, M., Chakravarty, A.R.,
J. Inorg. Biochem., 2004, vol. 98, p. 1087.
11. Owa, T., Yoshino, H., Okauchi, T., et al., J. Med.
Chem., 1999, vol. 42, p. 3789.
12. Cedujo, R., Alzuet, G., GonzalezꢀAlvarez, M., et al.,
J. Inorg. Biochem., 2006, vol. 100, p. 70.
13. GonzalezꢀAlvarez, M., Alzuet, G., CastilloꢀAgudo, L.,
et al., Eur. J. Inorg. Chem., 2006, vol. 19, p. 3823.
14. Marcias, B., Villa, M.J., Gomez, B., et al., J. Inorg.
Biochem., 2006, vol. 101, p. 444.
15. GarciaꢀGimenez, J.L., Alzuet, G., GonzalezꢀAlvarez, M.,
et al., J. Inorg. Biochem., 2009, vol. 103, p. 243.
16. CrysAlis PRO CCD and CrysAlis PRO RED, Oxford Difꢀ
fraction Ltd., Abingdon, 2006.
be noticed from an increase of the amount of linear
DNA in this sample as compared to the complex samꢀ
ple without SOD (lane 4). This enzyme catalyzes the
−i
dismutation of the superoxide anion radical
leadꢀ
O2 ,
ing to H2O2 and O2, which can further produce active
species which participate in the destruction of DNA.
In the presence of neocuproine (lane 11), the caꢀ
pacity of the complex to destroy DNA is much reꢀ
duced (the helicoidal and circular form coexist). In
the case of the studied complex, this can be explained
by the reduction of the Cu2+ ion to Cu(I) as intermeꢀ
diate step in the DNA degradation process. By adding
neocuproine, a stable complex of Cu(I) is formed
(Cu(I)ꢀneocuproine), thus inhibiting the subsequent
reactions of the degradation mechanism of the DNA
molecule.
17. SCALE3 ABSPACK, Empirical Absorption Correction,
CrysAlis–Software Package, Oxford Diffraction Ltd.,
2006.
Hydroxyl radicals are generated by a variety of
chemical and physical processes. Transitionꢀmetal
mediated OH production is known to occur by a
18. Sheldrick G.M., SHELXSꢀ97
Structure Solution, G ttingen (Germany): Univ. of
ttingen, 1997.
19. Sheldrick G.M., SHELXLꢀ97
ment of Crystal Structures, G ttingen (Germany): Univ.
of G ttingen, 1997.
20. Dolomanov, O.V., Bourhis, L.J., Gildea, et al., J. Appl.
Cryst., 2009, vol. 42, p. 339.
21. Wilson A.J.C., International Tables for Crystallography
vol. C, Dordrecht (The Netherlands): Kluwer Acaꢀ
demic Publishers, 1995.
22. Spek A.L., PLATON A Multipurpose Crystallographic
Tool, Utrecht (The Netherlands): Utrecht Univ., 2000.
23. Keller E., SCHAKALꢀ97 A Computer Program for the
, Program for Crystal
ö
•
G
ö
,
Program for the Refineꢀ
number of routes; two well known pathways are the
Fenton [43] and the Haber–Weiss [44] mechanisms.
The complex interacts with the DNA molecule. Imꢀ
mediately, the Cu2+ ion is reduced to Cu(I), and in the
presence of the molecular oxygen, the formed Cu(I)
complex produces reactive oxygen species in close
proximity to the double helix. These species finally atꢀ
tack the 2ꢀdeoxyribose moiety, leading to the cleavage
of the DNA chain. If the reactive species are not
formed close to DNA, they are likely to be dispersed
and neutralized.
ö
ö
,
,
,
Graphic Representation of Molecular Crystallographic
Models, Freiburg (Germany): Univ. of Freiburg, 1997.
ACKNOWLEDGMENTS
24. Alzuet, G., Ferrer, S., and Borras, J., Acta Crystallogr.,
C
, 1991, vol. 47, p. 2377.
25. Pedregosa, J.C., Alzuet, G., and Borras, J., Acta Crysꢀ
tallogr., , 1993, vol. 49, p. 630.
26. Allen, А.M., Kennard, O., Watson, D.G., et. al. Trans.
Perkin 2, 1987, p. S1.
27. Borras, E., Alzuet, G., Borras, J., et al., Polyhedron
2000, vol. 19, p. 1859.
Adriana Hangan is thankful for the financial supꢀ
port offered by research grant Resurse Umane PNIIꢀ
PD 474/2010.
C
,
REFERENCES
1. Liu, C., Zhou, J., Li, Q., et al., J. Inorg. Chem., 1999,
vol. 75, p. 233.
28. Ferrer, S., Haasnoot, J.G., Graaf, R.A.G., et al., Inorg.
Chim. Acta, 1992, vol. 192, p. 129.
29. Graf, M., Greaves, B., and StoeckliꢀEvans, H., Inorg.
Chim. Acta, 1993, vol. 204, p. 239.
30. Adison, A.W., Rao, T.N., Reedijk, J., et al., Dalton
Trans., 1984, p. 1349.
2. Theodorou, A., Demertzis, M.A., and KovalaꢀDeꢀ
mertzis, D., Biometals, 1999, vol. 12, p. 167.
3. Sigman, D.S., Kuwabara, M.D., Chen, C.H., et al.,
Methods Enzymol., 1991, vol. 208, p. 414.
4. GonzalezꢀAlvarez, M., Alzuet, G., Borras, J., et al.,
Inorg. Chem., 2003, vol. 42, p. 2992.
31. Koon, N., Wong, S., and Colson, D., J. Mol. Spectrosc.
1984, vol. 104, p. 129.
32. GonzalezꢀAlvarez, M., Alzuet, G., Borras, J., et al.,
,
5. GonzalezꢀAlvarez, M., Alzuet, G., Borras, J., et al.,
J. Biol. Inorg. Chem., 2003, vol. 8, p. 644.
J. Inorg. Biochem., 2004, vol. 98, p. 189.
6. Marcias, B., Garcia, I., Villa, M.V., et al., Inorg. Chim.
Acta, 2003, vol. 353, p. 139.
33. Marcias, B., Garcia, I., Villa, M.V., et al., J. Inorg.
Biochem., 2003, vol. 96, p. 367.
34. Cami, G.E., Ramirez de Arellano, M.C., Fustero, S.,
et al., An. Asoc. Quim. Argent., 2006, p. 941.
35. Otter, C.A., Couchman, S.M., Jeffery, J.C., et al.,
Inorg. Chim. Acta, 1998, vol. 278, p. 178.
7. GarciaꢀGimenez, J.L., Alzuet, G., GonzalezꢀAlvarez, M.,
et al.,
8. Hangan, A., Borras, J., LiuꢀGonzalez, M., et al.,
Z. Anorg. Allg. Chem., 2007, vol. 633, p. 1837.
J. Inorg. Chem., 2007, vol. 46, p. 7178.
9. GonzalezꢀAlvarez, M., Alzuet, G., Borras, J., et al., 36. Alzuet, G., Ferrer, S., Borras, J., et al., Inorg. Chim. Acꢀ
J. Biol. Inorg. Chem., 2008, vol. 13, p. 1249. ta, 1993, vol. 203, p. 257.
RUSSIAN JOURNAL OF COORDINATION CHEMISTRY Vol. 41
No. 6
2015