(a)
C(84)
for experimental assistance in the X-ray crystallographic
study.
C(83)
C(54)
C(45)
C(44)
C(85)
C(53)
C(46)
C(65)
C(42)
C(55)
C(81)
C(82)
Footnotes and References
C(43)
C(41)
C(52)
C(86)
C(64)
C(56)
* E-mail: ptwz@cornell.edu
C(51)
P(1)
† Selected analytical data: 1 (C6D6), dH 1.46 (6 H, s, CH3), 2.63 (2 H, d, JPH
3.2 Hz, PCH2), 7.01–7.09 (6 H, m, Ph), 7.50 (4 H, td, J 7.5, 1.8 Hz, Ph); dC
32.08 (d, JPH 7.6 Hz, CH3), 45.70 (d, JPH 16.8 Hz, PCH2), 88.44 (d, JPH 18.3
Hz, OC), 129.04 (d, J 2.2 Hz, m-Ph), 129.12 (s, p-Ph), 133.75 (d, JPH 19.1
Hz, o-Ph), 140.44 (d, JPH 12.3 Hz, ipso-Ph); dP 224.19 (s). 2 (major, C6D6),
dH 1.64 (12 H, br s, CH3), 1.71 (6 H, br s, CH3), 2.77 (4 H, br d, JPH 10 Hz,
PCH2), 3.07 (2 H, br d, JPH 2 Hz, PCH2), 6.62–6.93 (12 H, m, Ph),
6.95–7.10 (6 H, m, Ph), 7.34–7.54 (8 H, m, Ph), 7.67–7.80 (4 H, m, Ph); dP
217.3 (1 P, br s, n1/2 450 Hz, free Ph2P), 48 (2 P, br s, n1/2 1300 Hz, bound
Ph2P); (280 °C, C7D8); dP 52.17 (2 P, br m, JRhP 200 Hz, bound Ph2P),
56.42 (1 P, br m, JRhP 180 Hz, bound Ph2P). 3 (C6D6), d 1.40 (18 H, s, CH3),
3.07 (6 H, br s, PCH2), 6.94–6.97 (18 H, m, Ph), 7.26 (12 H, m, Ph); dC
34.83 (s, CH3), 45.22 (dd, J 16.5, 8.8 Hz, PCH2), 77.96 (dd, J 3.8, 3.0 Hz,
OC), 128.32 (s, Ph), 128.51 (s, Ph), 133.17 (dd, J 10.7, 5.3, o-Ph), 141.76
(ddd, J 18.3, 11.1, 3.4, ipso-Ph); dP 24.13 (d, JRhP 208 Hz); UV–VIS (thf),
310 nm (e 12,100 dm3 mol21 cm21); Anal. Calc. for C48H54O3P3-
TiRh·0.5C7H8. C, 63.85; H, 6.03. Found: C, 63.45; H, 5.98%. 4 (C6D6) dH
1.31 (18 H, s, CH3), 3.53 (6 H, br s, PCH2), 6.92–7.11 (18 H, m, Ph),
7.48–7.68 (12 H, m, Ph); dP 17.6 (d, JRhP 177 Hz).
C(66)
C(61)
P(3)
C(63)
C(92)
C(93)
C(91)
C(96)
Rh
C(72)
C(14)
C(62)
C(32)
C(95)
C(94)
C(34)
C(13)
Ti
C(11)
C(12)
C(7
P(2)
C(71)
C(31)
O(1)
C(74)
O(3)
C(76)
C(75)
C(33)
C(24)
C(21)
O(2)
C(22)
C(23)
(b)
C(54)
C(53)
C(52)
C(13)
C(55)
C(12)
‡ Crystallograpic data: 3·0.5C7H8: monoclinic, space group P21/c,
a = 13.899(2), b = 14.527(2), c = 24.016(3) Å, b = 96.040(10)°,
U = 4822.2(11) Å3, Z = 4, T = 293(2) K, m = 0.648 mm21, 6308
independent reflections, R1 = 0.0783, wR2 = 0.1297. CCDC 182/612.
C(51)
C(56)
C(11)
C(14)
C(41)
C(42)
P(1)
C(84)
C(43)
C(76)
C(46)
C(45)
C(32)
C(81)
C(44)
O(1)
C(8
C(83)
C(82)
C(86)
C(31)
C(75)
Rh
1 Strong Metal–Support Interactions, ed. R. T. K. Baker, S. J. Tauster and
J. A. Dumesic, ACS Symp. Ser. 298, American Chemical Society,
Washington, DC, 1986; S. J. Tauster, Acc. Chem. Res., 1987, 20, 389.
2 G. S. Ferguson and P. T. Wolczanski, Organometallics, 1985, 4,
1601.
3 S. M. Baxter, G. S. Ferguson and P. T. Wolczanski, J. Am. Chem. Soc.,
1988, 110, 4231.
4 S. M. Baxter and P. T. Wolczanski, Organometallics, 1990, 9, 2498.
5 G. S. Ferguson, P. T. Wolczanski, L. Pa´rka´nyi and M. C. Zonnevylle,
Organometallics, 1988, 7, 1967.
O(3)
C(74)
Ti
C(71)
P(2)
C(73)
C(66)
C(33)
C(72)
P(3)
C(34)
O(2)
C(65)
C(24)
C(61)
C(64)
C(91)
C(92)
C(62)
C(63)
C(96)
C(21)
C(22)
C(93)
C(95)
C(94)
6 W. J. Sartain and J. P. Selegue, Organometallics, 1989, 8, 2153;
W. J. Sartain and J. P. Selegue, Organometallics, 1989, 6, 1812;
W. J. Sartain and J. P. Selegue, J. Am. Chem. Soc., 1985, 107, 5818.
7 S. Friedrich, H. Memmler, L. H. Gade, W.-S. Li, I. J. Scowen,
M. McPartlin and C. E. Housecroft, Inorg. Chem., 1996, 35, 2433;
S. Friedrich, L. H. Gade, I. J. Scowen and M. McPartlin, Organome-
tallics, 1995, 14, 5344; S. Friedrich, L. H. Gade, I. J. Scowen and
M. McPartlin, Agnew. Chem., Int. Ed. Engl., 1996, 35, 1338.
8 D. Selent, R. Beckhaus and J. Pickardt, Organometallics, 1993, 12,
2857; G. Schmid, B. Stutte and R. Boese, Chem. Ber., 1978, 111,
1239.
1
1
Fig.
1
Side (a) and Ti–Rh parallel (b) views of Ti(m:h ,h -OC-
Me2CH2PPh2)3Rh 3. Selected (see text) interatomic distances (Å) and
angles (°): Ti–Rh 2.2142(11), Ti–O(1) 1.833(4), Ti–O(2) 1.831(4), Ti–O(3)
1.827(4), Rh–P(1) 2.318(2), Rh–P(2) 2.316(2), Rh–P(3) 2.322(2); O(1)–Ti–
Rh 109.5(1), O(2)–Ti–Rh 108.5(1), O(3)–Ti–Rh 108.9(1), Ti–O(1)–C(11)
143.8(3), Ti–O(2)–C(21) 137.9(4), Ti–O(3)–C(31) 144.1(3), O(1)–C(11)–
Cav 108.3(14), O(2)–C(21)–Cav 109.0(25), O(3)–C(31)–Cav 108.4(12),
(O)C–C–Pav 117.3(25), O(1)–Ti–Rh–P(1) 17.5(2), O(2)–Ti–Rh–P(2)
13.7(2), O(3)–Ti–Rh–P(3) 16.2(2).
9 G. Giordano and R. H. Crabtree, Inorg. Synth., 1990, 28, 88.
10 C. A. Hunter, Chem. Soc. Rev., 1994, 23, 101; C. A. Hunter and
J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112, 5525.
11 F. A. Cotton and R. A. Walton, Multiple Bonds Between Metal Atoms,
Oxford University Press, New York, 2nd edn., 1993; L. Pauling, The
Nature of the Chemical Bond, Cornell University Press, Ithaca, NY,
1960.
on models of {MeC(CH2NSiMe3)3}MFe(CO)2Cp (M = Ti, Sn)
by Gade and coworkers.7 While it is difficult to assess the
influence of the alkoxyalkylphosphine bridges on d(Ti–Rh),
none of the bond angles and distances are characteristically
strained while imparting the desired cylindrical symmetry.
We thank the National Science Foundation and Cornell
University for support of this research, and Emil B. Lobkovsky
Received in Bloomington, IN, USA, 9th July 1997; 7/04890D
2110
Chem. Commun., 1997