76 Journal of Medicinal Chemistry, 2011, Vol. 54, No. 1
Stupple et al.
2ꢀs), 2.30-2.20 (2H, m), 2.13-2.03 (2H, m), 1.95 (3H, s), 1.90-
1.84 (2H, m), 1.65-1.55 (4H, m), 1.11-1.08 and 1.06-1.04 (6H,
2 ꢀ m). Rotamers apparent in spectrum. LRMS m/z [MHþ]
requires C, 67.16; H, 7.97; N, 13.50%. [R]D25 -23.4° (1.64 mg/mL in
MeOH).
(8) Westby, M.; Smith-Burchnell, C.; Mori, J.; Lewis, M.; Mosley, M.;
Stockdale, M.; Dorr, P.; Ciaramella, G.; Perros, M. Reduced
maximal inhibition in phenotypic susceptibility assays indicates
that viral strains resistant to the CCR5 antagonist maraviroc utilize
inhibitor-bound receptor for entry. J. Virol. 2007, 81, 2359–2371.
(9) Walker, D. K.; Abel, S.; Comby, P.; Muirhead, G. J.; Nedderman,
A. N. R.; Smith, D. A. Species differences in the disposition of the
CCR5 antagonist, UK-427,857, a new potential treatment for HIV.
Drug Metab. Dispos. 2005, 33, 587–595.
(10) Barber, C. G.; Blakemore, D. C.; Chiva, J.-Y.; Eastwood, R. L.;
Middleton, D. S.; Paradowski, K. A. 1-Amido-1-phenyl-3-piper-
idinylbutanes;CCR5 antagonists for the treatment of HIV. Part
1. Bioorg. Med. Chem. Lett. 2009, 19, 1075–1079.
(11) Barber, C. G.; Blakemore, D. C.; Chiva, J.-Y.; Eastwood, R. L.;
Middleton, D. S.; Paradowski, K. A. 1-Amido-1-phenyl-3-piper-
idinylbutanes;CCR5 antagonists for the treatment of HIV: Part
2. Bioorg. Med. Chem. Lett. 2009, 19, 1499–1503.
(12) Price, D. A.; Armour, D.; de Groot, M.; Leishman, D.; Napier, C.;
Perros, M.; Stammen, B. L.; Wood, A. Overcoming hERG affinity
in the discovery of maraviroc; a CCR5 antagonist for the treatment
of HIV. Curr. Top. Med. Chem. 2008, 8, 1140–1151.
(13) Price, D. A.; Armour, D.; de Groot, M.; Leishman, D.; Napier, C.;
Perros, M.; Stammen, B. L.; Wood, A. Overcoming hERG affinity
in the discovery of the CCR5 antagonist maraviroc. Bioorg. Med.
Chem. Lett. 2006, 16, 4633–4637.
(14) Armour, D. R.; Price, D. A.; Stammen, B. L. C.; Wood, A.; Perros,
M.; Edwards, M. P. Preparation of acylaminophenylpropylbenzi-
midazolylazabicycloalkanes and related compounds as CCR5
receptor modulators. Patent WO 00/38680, 2000.
(15) Dorr, P.; Westby, M.; Dobbs, S.; Griffin, P.; Irvine, B.; Macartney,
M.; Mori, J.; Rickett, G.; Smith-Burchnell, C.; Napier, C.; Webster,
R.; Armour, D.; Price, D.; Stammen, B.; Wood, A.; Perros, M.
Maraviroc (UK-427,857), a potent, orally bioavailable, and selec-
tive small-molecule inhibitor of chemokine receptor CCR5 with
broad-spectrum anti-human immunodeficiency virus type 1 activity.
Antimicrob. Agents Chemother. 2005, 49, 4721–4732.
(16) Leeson, P. D.; Springthorpe, B. The influence of drug-like concepts
on decision-making in medicinal chemistry. Nature Rev. Drug
Discovery 2007, 6, 881–890.
510. Found C, 66.94; H, 7.92; N, 13.47. C29H40FN5O2 0.5(H2O)
3
Gp160 Fusion Assay.35 CHO-Tat10 and HeLa-P4 cells were
grown in 225 cm2 flasks or roller bottles to confluence. Cells were
washed twice with PBS and harvested using Trypsin EDTA. Cells
were pooled into two separate 1 L sterile spinner flasks, one for each
cell line. A cell count was performed, and the cell suspension was
diluted in medium (DMEM with 2 mM L-glutamine and 2% FCS
for HeLa-P4 or RPMI1640 with 2 mM L-glutamine and 2% FCS
for CHO-Tat10) to give a suspension at 6.6 ꢀ 105 cells per mL. The
spinner flasks were connected to a 5% CO2 gas supply to maintain
pH and stirred at 30 rpm at room temperature during dispensing.
Then 15 μL of CHO-Tat10 and 15 μL of HeLa-P4 were added
sequentially to a sterile tissue culture-treated 384-well plate con-
taining 10 μL compound/control solution (360 wells of test com-
pound and 8 wells each of a maximum [no inhibitor], minimum
[saturating concentration of fusion inhibitor], and standard [an
IC50 concentration of a fusion inhibitor] controls). Plates were
lidded and incubated at 37 °C and 5% CO2 in a humidified
(Cytomat) incubator. After 20 h, 20 μL of reaction buffer (13.4%
glycerol, 1.3% Triton-X100, 0.34 M Tris [pH7.8], 200 μM 4-methy-
lumbelliferyl-galactoside (MUG), 0.028% β-mercapto-ethanol,
33% Bio-Rad 1ꢀ reaction buffer) was added to each well. Plates
were incubated at 25 °C for a further 2 h, during which time cell lysis
occurred, and then 10 μL of Bio-Rad 10 ꢀ stop buffer was added to
each well. The fluorescent signal was detected, after a further
45-min incubation, using a Tecan Spectrafluor Plus (Tecan)
(λex = 360 nm, λem = 460 nm; bottom reading; 3 flashes; gain =
50-60).
(17) Basford, P. A.; Stephenson, P. T.; Taylor, S. C. J.; Wood, A.
Preparation of tropane derivatives as CCR5 modulators. Patent
WO 03/084954, 2003.
(18) Price, D. A.; Gayton, S.; Selby, M. D.; Ahman, J.; Haycock-
Lewandowski, S.; Stammen, B. L.; Warren, A. Initial synthesis of
UK-427,857 (maraviroc). Tetrahedron Lett. 2005, 46, 5005–5007.
(19) Armour, D. R.; Price, D. A.; Stammen, B. L. C.; Wood, A.; Perros,
M.; Edwards, M. P. Preparation of azolylpiperidines as CCR5
receptor modulators. Patent WO 00/039125, 2000.
Acknowledgment. We thank Paul Griffin, Becky Irvine,
Alex Martin, Julie Mori, Hannah Perkins, Nikki Robas,
Graham Rickett Caroline Smith-Burchnell, Malcolm Macartney,
and Roy Mansfield for their contributions to the biology
studies.
Supporting Information Available: Additional experimental
procedures and analytical data for intermediates and final
compounds. Further pharmacokinetic data from rat and dog
po studies are also provided. This material is available free of
(20) Stupple, P. A. Preparation of imidazopyridine substituted tropane
derivatives with CCR5 receptor antagonist activity for the treat-
ment of HIV and inflammation. Patent WO 2005/033107, 2005.
(21) Ernst, J.; Dahl, R.; Lum, C.; Sebo, L.; Urban, J.; Miller, S. G.;
€
Lundstrom, J. Anti-HIV-1 entry optimization of novel imidazopi-
peridine-tropane CCR5 antagonists. Bioorg. Med. Chem. Lett.
2008, 18, 1498–1501.
(22) Duan, M.; Aquino, C.; Dorsey, G. F.; Ferris, R.; Kazmierski,
W. M. 4,4-Disubstituted cyclohexylamine based CCR5 chemokine
receptor antagonists as anti-HIV-1 agents. Bioorg. Med. Chem.
Lett. 2009, 19, 4988–4992.
(23) Duan, M.; Aquino, C.; Ferris, R.; Kazmierski, W. M.; Kenakin, T.;
Koble, C.; Wheelan, P.; Watson, C.; Youngman, M. [2-(4-Phenyl-
4-piperidinyl)ethyl]amine based CCR5 antagonists: derivatiza-
tions at the N-terminal of the piperidine ring. Bioorg. Med. Chem.
Lett. 2009, 19, 1610–1613.
(24) Kazmierski, W. M.; Aquino, C.; Chauder, B. A.; Deanda, F.;
Ferris, R.; Jones-Hertzog, D. K.; Kenakin, T.; Koble, C. S.;
Watson, C.; Wheelan, P.; Yang, H.; Youngman, M. Discovery of
Bioavailable 4,4-Disubstituted Piperidines as Potent Ligands of the
Chemokine Receptor 5 and Inhibitors of the Human Immunode-
ficiency Virus-1. J. Med. Chem. 2008, 51, 6538–6546.
(25) Fish, P. V.; Barta, N. S.; Gray, D. L. F.; Ryckmans, T.; Stobie, A.;
Wakenhut, F.; Whitlock, G. A. Derivatives of (3S)-N-(biphenyl-2-
ylmethyl)pyrrolidin-3-amine as selective noradrenaline reuptake
inhibitors: reducing P-gp mediated efflux by modulation of
H-bond acceptor capacity. Bioorg. Med. Chem. Lett. 2008, 18,
4355–4359.
References
(1) Temesgen, Z; Warnke, D; Kasten, M J. Current status of antiret-
roviral therapy. Expert Opin. Pharmacother. 2006, 7, 1541–1554.
(2) Dorr, P.; Perros, M. CCR5 inhibitors in HIV-1 therapy. Expert
Opin. Drug Discovery 2008, 3, 1345–1361.
(3) Samson, M.; Libert, F.; Doranz, B. J.; Rucker, J.; Liesnard, C.;
ꢀ
Farber, C. M.; Saragosti, S.; Lapoumeroulie, C.; Cognaux, J.;
Forceille, C.; Muyldermans, G.; Verhofstede, C.; Burtonboy, G.;
Georges, M.; Imai, T.; Rana, S.; Yi, Y.; Smyth, R. J.; Collman,
R. G.; Doms, R. W.; Vassart, G.; Parmentier, M. Resistance to
HIV-1 infection in caucasian individuals bearing mutant alleles of
the CCR-5 chemokine receptor gene. Nature 1996, 382, 722–725.
(4) Meanwell, N. A.; Kadow, J. F. Drug evaluation: Maraviroc, a
chemokine CCR5 receptor antagonist for the treatment of HIV
infection and AIDS. Curr. Opin. Invest. Drugs 2007, 8, 669–681.
(5) Wood, A.; Armour, D. The discovery of the CCR5 receptor
antagonist, UK-427,857, a new agent for the treatment of HIV
infection and AIDS. Prog. Med. Chem. 2005, 43, 239–271.
(6) Abel, S.; Russell, D.; Whitlock, L. A.; Ridgway, C. E.; Nedderman,
A. N. R.; Walker, D. K. Assessment of the absorption, metabolism
and absolute bioavailability of maraviroc in healthy male subjects.
Br. J. Clin. Pharmacol. 2008, 65, 60–67.
(26) Singleton, D. H.; Boyd, H.; Steidl-Nichols, J. V.; Deacon, M.;
deGroot, M. J.;Price, D.;Nettleton, D. O.;Wallace, N. K.;Troutman,
M. D.; Williams, C.; Boyd, J. G. Fluorescently Labeled Analogues of
Dofetilide as High-Affinity Fluorescence Polarization Ligands for the
Human Ether-a-go-go-Related Gene (hERG) Channel. J. Med. Chem.
2007, 50, 2931–2941.
(7) Chan, P. L. S.; Weatherley, B.; McFadyen, L. A population
pharmacokinetic meta-analysis of maraviroc in healthy volunteers
and asymptomatic HIV-infected subjects. Br. J. Clin. Pharmacol.
2008, 65, 76–85.