COMMUNICATIONS
Table 2. Activity and selectivity of aVb3 antagonists 10 and 11 (Scheme 4).
The IC50 values [mm] denote the concentration required to reduce binding
of fibrinogen (Fg) to aIIbb3 or of Kistrin (K) to aVb3 by 50%.[30]
the R configuration and which are approximately sevenfold
less active than the S enantiomers 6b and 6a, respectively.
Unexpectedly, the binding affinity is quite insensitive to the
orientation of the central purine scaffoldÐa comparison of,
for example, 6a (IC50 150 nm) and 11a (IC50 7 5 nm)
reveals only a small preference for the ªreversedº orientation.
The difference is of the same order of magnitude as the one
induced by changing the position of the purine scaffold within
a given orientation (ªslidomersº); compare, for example, 11a
(IC50 7 5 nm) and 11c (IC50 190 nm).
Guanidine
m
n
IC50
IC50
K/VnR
Fg/IIbIIIa
10a
1
5
0.65
0.6
10b
10c
10d
11a
1
1
2
1
4
3
3
4
0.175.0
0.54
In conclusion, we have been able to show that the purine
scaffold is a highly versatile building block in the synthesis of
peptidomimetics. To mimic the RGD peptide recognition
sequence of the vitronection receptor, we could easily vary
spacer length, rigidity, and pharmacophoric groups. This led to
a very consistent structure ± activity relationship and resulted
in highly active and selective new antagonists of aVb3. The
ease of derivatization will certainly encourage many future
uses of this scaffold in peptidomimetic chemistry.
3.5
> 10
0.58
0.075
> 10
11b
11c
1
2
5
3
0.21
0.19
> 10
> 10
Received: February 3, 2000 [Z14641]
[1] E. Ruoslahti, M. D. Pierschbacher, Science 1987, 238, 491 ± 497.
[2] Integrins: Molecular and Biological Responses to the Extracellular
Matrix (Eds.: D. A. Cheresh, R. P. Mecham), Academic Press, San
Diego, 1994.
[3] R. O. Hynes, Cell 1992, 69, 11 ± 25.
[4] V. W. Engleman, M. S. Kellogg, T. E. Rogers, Annu. Rep. Med. Chem.
1996, 31, 191 ± 200.
13 bonds. This observation is in good agreement with the
results obtained for other inhibitors[18, 19] and with Kesslerꢁs
observation that in cyclopeptides aVb3-selective molecules are
strongly bent, while aIIbb3-selective molecules bind in a more
extended conformation.[14, 16]
A comparison of 5b, 6a, and 7 illustrates that cyclic
guanidines have a higher affinity for aVb3 than noncyclic ones.
The cyclic guanidino antagonist 6a (IC50 150 nm) exhibits a
fivefold affinity over the open guanidino compound 5b
[5] S. A.Mousa, D. A. Cheresh, Drug Discovery Today 1997, 2, 187± 199.
[6] M. H. Helfrich, S. A. Nesbitt, P. T. Lakkakorpi, M. J. Barnes, S. C.
Bodary, G. Shankar, W. T. Mason, D. L. Mendrick, H. K. Vaananen,
M. A. Horton, Bone 1996, 19, 317± 328.
[7] S. B. Rodan, G. A. Rodan, J. Endocrinol. 1997, 154, S47± S56.
[8] P. C. Brooks, Drug News Perspect. 1997, 10, 456 ± 461.
[9] A. Giannis, Biomed. Health Res. 1999, 22, 81 ± 89.
[10] J. Samanen, A. Jonak, D. Rieman, T.-L. Yue, Curr. Pharm. Des. 1997,
3, 545 ± 584.
[11] K. M. Yamada, J. Biol. Chem. 1991, 266, 12809 ± 12812.
[12] E. Ruoslahti, Annu. Rev. Cell Dev. Biol. 1996, 12, 697± 715.
[13] S. E. DꢁSouza, M. H. Ginsberg, E. F. Plow, Trends Biochem. Sci. 1991,
16, 246 ± 250.
[14] R. Haubner, D. Finsinger, H. Kessler, Angew. Chem. 1997, 109, 1440 ±
1456; Angew. Chem. Int. Ed. Engl. 1997, 36, 1374 ± 1389.
[15] M. Pfaff, K. Tangemann, B. Müller, M. Gurrath, G. Müller, H. Kessler,
R. Timpl, J. Engel, J. Biol. Chem. 1994, 269, 20233 ± 20238.
[16] M. A. Dechantsreiter, E. Planker, B. Mathae, E. Lohof, G. Hölze-
mann, A. Jonczyk, S. L. Goodman, H. Kessler, J. Med. Chem. 1999, 42,
3033 ± 3040.
(IC50 700 nm). The 2-aminobenzimidazole antagonist
7
shows approximately the same potency as 6a. Interestingly
this increase in affinity is not observed for aIIbb3 binding. A
similar trend can be observed in the ªreversedº series;
however, the increase in affinity from 10b (IC50 170 nm) to
the cyclic guanidino compound 11a (IC50 7 5 nm) is only by a
factor of 2, but at the same time there is a decrease in affinity
to aIIbb3. This decreased affinity to aIIbb3 for cyclic guanidines
can also be observed in a comparison of the extended
antagonists 10a and 11b. One could speculate that the
antagonists bind to aIIbb3 through an ªend-onº interaction,
while aVb3-binding is achieved through ªside-onº binding on
the guanidine.
[17] A. Giannis, F. Rubsam, Adv. Drug Res. 1997, 29, 1 ± 7 8.
[18] A. L. Rockwell, M. Rafalski, W. J. Pitts, D. G. Batt, J. J. Petraitis, W. F.
DeGrado, S. Mousa, P. K. Jadhav, Bioorg. Med. Chem. Lett. 1999, 9,
937± 942.
Another enhancement in aVb3 binding is obtained through
the rigidification of the spacer from aminobutane in 6a
(IC50 150 nm) to methylpiperidine in 6b (IC50 50 nm),
keeping the length of the spacer constant. The piperidine
spacer seems to bring the guanidino group into the correct
spatial orientation and, in addition, it has the advantage that
no additional stereocenter is introduced.
The S configuration is clearly preferred for the only
stereocenter that is connected with the lipophilic side chain,
the benzyloxycarbonylamino group, as can be seen from the
IC50 values for 6c (340 nm) and 6d (1000 nm) which both have
[19] K. C. Nicolaou, J. I. Trujillo, B. Jandeleit, K. Chibale, M. Rosenfeld, B.
Diefenbach, D. A. Cheresh, S. L. Goodman, Bioorg. Med. Chem.
1998, 6, 1185 ± 1208.
[20] R. M. Keenan, M. A. Lago, W. H. Miller, F. E. Ali, R. D. Cousins,
L. B. Hall, S.-M. Hwang, D. R. Jakas, C. Kwon, C. Louden, T. T.
Nguyen, E. H. Ohlstein, D. J. Rieman, S. T. Ross, J. M. Samanen, B. R.
Smith, J. Stadel, D. T. Takata, L. Vickery, C. C. K. Yuan, T.-L. Yue,
Bioorg. Med. Chem. Lett. 1998, 8, 3171 ± 3176.
[21] R. M. Keenan, W. H. Miller, M. A. Lago, F. E. Ali, W. E. Bondinell,
J. F. Callahan, R. R. Calvo, R. D. Cousins, S.-M. Hwang, D. R. Jakas,
T. W. Ku, C. Kwon, T. T. Nguyen, V. A. Reader, D. J. Rieman, S. T.
Ross, D. T. Takata, I. N. Uzinskas, C. C. K. Yuan, B. R. Smith, Bioorg.
Med. Chem. Lett. 1998, 8, 3165 ± 3170.
2876
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
1433-7851/00/3916-2876 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2000, 39, No. 16