Organic Letters
Letter
Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.;
Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369.
(5) (a) Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. 1997, 62, 1264.
(b) Green, A. E.; Agouridas, V.; Deniau, E. Tetrahedron Lett. 2013, 54,
7078.
(6) (a) Toyota, M.; Wada, T.; Matsuura, M.; Fukumoto, K. Synlett
1995, 1995, 761. (b) Trost, B. M. Chem. Soc. Rev. 1982, 11, 141.
(7) (a) Ogawa, S.; Watanabe, T.; Sugimoto, I.; Moriyuki, K.; Goto, Y.;
Yamane, S.; Watanabe, A.; Tsuboi, K.; Kinoshita, A.; Kigoshi, H.; Tani,
K.; Maruyama, T. ACS Med. Chem. Lett. 2016, 7, 306. (b) Martins, T. J.;
Fowler, K. W.; Odingo, J.; Kesicki, E. A.; Oliver, A.; Burgess, L.E.;
Gaudino, J. J.; Jones, Z. S.; Newhouse, B. J.; Schlachter, S. T. Cyclic
AMP-Specific Phosphodiesterase Inhibitors. US Patent 6,423,710 B1,
Jul 23, 2002.
(8) (a) Paquette, L. A. Top. Curr. Chem. 1984, 119, 1. (b) Chanon, M.;
Barone, R.; Baralotto, C.; Julliard, M.; Hendrickson, J. B. Synthesis 1998,
1998, 1559.
(9) Sprecker, M. A.; Weiss, R. A.; Levorse, A. T., Jr.; Heinsohn, H. H.,
Jr.; Beck, C. E. J.; Hanna, M. R. Carbon Containing Functional Group
Substituted 4,5,6,7-Tetrahydro-polyalkylated-4-indanes, Isomers
Thereof, Processes for Preparing Same and Uses Thereof. US Patent
6,271,193 B1, Aug 7, 2001.
(10) Baum, J. W.; Alto, P.; Diekman, J. D.; Park, M. Aliphatic Indanyl
Ethers. US Patent 3,850,992, Nov 26, 1974.
(11) For recent reviews on the Mitsunobu reaction, see: (a) Fletcher, S.
Org. Chem. Front. 2015, 2, 739. (b) Swamy, K. C.. K; Kumar, N. N. B.;
Balaraman, E.; Kumar, K. V. P. P. Chem. Rev. 2009, 109, 2551. (c) But, T.
Y. S.; Toy, P. H. Chem. - Asian J. 2007, 2, 1340.
stereoelectronic effects should be complementary and lead to the
formation of 9g with high selectivity, but this was not observed.
In conclusion, the Pd-catalyzed coupling of aryl or alkenyl
triflates bearing pendant alkenes represents a new method for the
stereoselective synthesis of a variety of 2-indanyl ethers and
ether-substituted alkylidenecyclopentane derivatives. The prod-
ucts are generated in good yields and high diastereoselectivities
in most cases, and a number of functional groups, including
chloro, fluoro, quinoline, ester, alkene, ether, and carbamate
groups, are tolerated. In addition, this method also provides
access to 3°-alkyl ethers that are difficult to access in a
stereocontrolled fashion. Future studies will be directed toward
improving enantioselectivities in reactions of prochiral sub-
strates.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
1
Experimental procedures, characterization data, and H
and 13C NMR spectra for all new compounds (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(12) (a) Winstein, S.; Roberts, R. M. J. Am. Chem. Soc. 1953, 75, 2297.
(b) Feuer, H.; Hooz, J. In The Chemistry of the Ether Linkage; Patai, S.,
Ed.; Wiley: New York, 1967; p 445.
(13) (a) Subramanian, R. S.; Balasubramanian, K. K. Synth. Commun.
1989, 19, 1255. (b) Sankara Subramanian, R. S.; Balasubramanian, K. K.
Tetrahedron Lett. 1989, 30, 2297. (c) Shi, Y.-J.; Hughes, D. L.;
McNamara, J. M. Tetrahedron Lett. 2003, 44, 3609. (d) Lanning, M. E.;
Fletcher, S. Tetrahedron Lett. 2013, 54, 4624.
Notes
The authors declare no competing financial interest.
(14) Shintou, T.; Mukaiyama, T. J. Am. Chem. Soc. 2004, 126, 7359.
(15) Milne, J. E.; Buchwald, S. L. J. Am. Chem. Soc. 2004, 126, 13028.
(16) Fors, B. P.; Watson, D. A.; Biscoe, M. R.; Buchwald, S. L. J. Am.
Chem. Soc. 2008, 130, 13552.
(17) BrettPhos ligand may also be utilized to afford product in good
yield, although slightly better results were usually obtained with RuPhos.
(18) The trans-1,2-disubstituted indane product stereochemistry
matches that of previous investigations utilizing 2-(but-3-en-2-yl)phenyl
triflate and pyrrolidine nucleophile; see ref 2b.
ACKNOWLEDGMENTS
■
We thank the University of Michigan for financial support of this
work. D.R.W.’s studies were also supported in part by a Bristol-
Myers Squibb Graduate Research Fellowship, for which he is
grateful. We thank Ms. Janelle Kirsch, University of Michigan
Department of Chemistry, for assistance with stereochemical
assignments.
(19) For studies on highly electrophilic cationic-Pd activation of
alkenes, see: Hahn, C.; Morvillo, P.; Vitagliano, A. Eur. J. Inorg. Chem.
2001, 2001, 419.
(20) The main side products observed in the transformations
described in Schemes 2−5 result from base-mediated cleavage of the
triflate to afford the corresponding phenol or ketone (after enol
tautomerization), or from reduction of the aryl or alkenyl triflate starting
material.
(21) Efforts to employ substrates bearing 1,2-disubstituted alkenes
have thus far produced only small amounts of desired products.
(22) Efforts to prepare an unsubstituted analog of 8 (R1, R2, R3 = H)
have thus far been unsuccessful due to the formation of inseparable
mixtures of enol triflate regioisomers that result from modest
regioselectivity during enolate generation.
(23) Electrostatic stabilization for pseudoaxial conformers of
oxocarbenium ions by heteroatom substituents in nucleophilic
substitution reactions has previously been proposed: Ayala, L.;
Lucero, C. G.; Romero, J. A. C.; Tabacco, S. A.; Woerpel, K. A. J. Am.
Chem. Soc. 2003, 125, 15521.
REFERENCES
■
(1) For reviews on Pd-catalyzed alkene difunctionalization, see:
(a) Schultz, D. M.; Wolfe, J. P. Synthesis 2012, 44, 351. (b) Wolfe, J. P.
Top. Heterocycl. Chem. 2013, 32, 1. (c) Garlets, Z. J.; White, D. R.; Wolfe,
J. P. Asian J. Org. Chem. 2017, 6, 636. (d) Yin, M.; Mu, X.; Liu, G. Acc.
Chem. Res. 2016, 49, 2413. (e) Kotov, V.; Scarborough, C. C.; Stahl, S. S.
Inorg. Chem. 2007, 46, 1910. (f) Jensen, K. H.; Sigman, M. S. Org.
Biomol. Chem. 2008, 6, 4083. (g) Muniz, K.; Martinez, C. J. Org. Chem.
̃
2013, 78, 2168. For alkene difunctionalization reactions via copper
catalysis, see: (h) Shimizu, Y.; Kanai, M. Tetrahedron Lett. 2014, 55,
3727. (i) Chemler, S. R. Org. Biomol. Chem. 2009, 7, 3009. For
hypervalent iodine catalyzed vicinal difunctionalization of alkenes, see:
(j) Romero, R. M.; Woste, T. H.; Muniz, K. Chem. - Asian J. 2014, 9, 972.
For other metal-catalyzed 1,2-diamination reactions, see: (k) Cardona,
̈
̃
F.; Goti, A. Nat. Chem. 2009, 1, 269.
(2) (a) White, D. R.; Hutt, J. T.; Wolfe, J. P. J. Am. Chem. Soc. 2015,
137, 11246. (b) White, D. R.; Wolfe, J. P. Chem. - Eur. J. 2017, 23, 5419.
(3) (a) Muzart, J. Tetrahedron 2003, 59, 5789. (b) Navarro, O.;
Marion, N.; Oonishi, Y.; Kelly, R. A., III; Nolan, S. P. J. Org. Chem. 2006,
71, 685. (c) Chen, J.; Zhang, Y.; Yang, L.; Zhang, X.; Liu, J.; Li, L.; Zhang,
H. Tetrahedron 2007, 63, 4266.
(4) The Pd-catalyzed coupling of aryl triflates with phenols is known to
proceed in good yield with Pd/biarylphosphine catalyst systems. See:
D
Org. Lett. XXXX, XXX, XXX−XXX